

HYDRODYNAMICS AND SEDIMENT DYNAMICS SURVEYS REPORT REVISION 2

REMEDIAL DESIGN SERVICES SWAN ISLAND BASIN PROJECT AREA CERCLA DOCKET NO. 10-2021-001

PORTLAND HARBOR SUPERFUND SITE PORTLAND, MULTNOMAH COUNTY, OREGON

Contract Number: DT2002

Prepared for: Swan Island Basin Remedial Design Group

Prepared by:

11107 Sunset Hills Road, Suite 400 Reston, Virginia 20190

With assistance from:

PACIFIC groundwater group

December 2024

This page was intentionally left blank.

HYDRODYNAMICS AND SEDIMENT DYNAMICS SURVEYS REPORT REVISION 2

REMEDIAL DESIGN SERVICES SWAN ISLAND BASIN PROJECT AREA CERCLA DOCKET NO. 10-2021-001

PORTLAND HARBOR SUPERFUND SITE PORTLAND, MULTNOMAH COUNTY, OREGON

Contract Number: DT2002

Prepared for:

Swan Island Basin Remedial Design Group

Prepared by:

HydroGeoLogic, Inc. 11107 Sunset Hills Road, Suite 400 Reston, Virginia 20190

With assistance from:

Mott MacDonald Pacific Groundwater Group Bridgewater Group Inc.

December 2024

This page was intentionally left blank

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1-1					
	1.1	OBJECTIVES AND SCOPE	1-1					
	1.2	PROJECT AREA						
	1.3	DOCUMENT ORGANIZATION						
2.0	SURV	VEY ACTIVITIES	2-1					
	2.1	SEDFLUME						
	2.2	ACOUSTIC DOPPLER CURRENT PROFILER						
		2.2.1 Bottom-Mounted Acoustic Doppler Current Profiler	2-2					
		2.2.2 Vessel-Mounted Acoustic Doppler Current Profiler						
	2.3	SUSPENDED SEDIMENTS						
	2.4	WAVES						
2.0	CUDA	VEV DESHI TS SUMMADY	2 1					
5.0	3UK V	SEDELLIME						
	3.1							
	3.2	ACOUSTIC DOPPLER CURRENT PROFILER						
		3.2.1 Bottom-Mounted Acoustic Doppler Current Profiler						
		3.2.2 Vessel-Mounted Acoustic Doppler Current Profiler						
	3.3	SUSPENDED SEDIMENTS						
	3.4	WAVES						
4.0	CONCLUSIONS							
	4.1	SEDFLUME						
	4.2	ACOUSTIC DOPPLER CURRENT PROFILER						
	4.3	SUSPENDED SEDIMENTS						
	4.4	WAVES						
5.0	REFE	RENCES	5-1					

Page

LIST OF TABLES

Table 2-1	Survey Equipment Summary									
LIST OF FIGURES										
Figure 2-1	River Conditions at Morrison Street Bridge (USGS 14211720) and ADCP/Wave Gage Deployment Periods									
Figure 2-2	SEDflume Sampling Locations									
Figure 2-3	Deployment Locations of ADCPs and Wave Gages, and Transects Surveyed by Vessel-Mounted ADCPs									
Figure 2-4	Deployment Locations of CTD Turbidity Sensors and CTD Profiles (Casts)									
Figure 2-5	Turbidity to TSS Preparation									
Figure 2-6	CTD Turbidity to TSS Correlation									
Figure 3-1	SEDflume Median Grain Size (Surface Layer)									
Figure 3-2	SEDflume Dry Bulk Density (Surface Layer)									
Figure 3-3a	SEDflume Critical Shear Stress for Erosion (Surface Layer)									
Figure 3-3b	SEDflume Critical Shear Stress for Erosion (Layer 2)									
Figure 3-4	Measured Current Speed and Velocity Components at ADCP1, 3 ft and 9 ft Above Riverbed									
Figure 3-5	Measured Current Speed and Velocity Components at ADCP2, 3 ft and 9 ft Above Riverbed									
Figure 3-6	Vessel-Mounted ADCP Measurements (Depth-Averaged Velocities) in the Willamette River, Rising Tide Conditions									
Figure 3-7	Vessel-Mounted ADCP Measurements (Depth-Averaged Velocities) in the Willamette River, Falling Tide Conditions									
Figure 3-8	Vessel-Mounted ADCP Measurements (Depth-Averaged Velocities) in Swan Island Basin Falling Tide Conditions									
Figure 3-9	River Conditions and TSS Concentrations in Swan Island Basin									
Figure 3-10	Closeup of TSS Concentrations in Willamette River and Swan Island Basin									
Figure 3-11	Vertical Profiles of TSS Concentrations Measured During CTD Casts									
Figure 3-12	Measured Wave Gage Depth: Deployment 1 and Deployment 2									
Figure 3-13	High-Pass Filtered Water Level Fluctuations at Wave Gages: Deployment 1 and Deployment 2									
Figure 3-14	Calculated Wave Statistics, Deployment 1									
Figure 3-15	Calculated Wave Statistics, Deployment 2									
Figure 3-16	Vessel Wake Event Identified in Swan Island Basin at Station 3									
Figure 3-17	Largest Vessel Wake Observed in Swan Island Basin at Station 3									
Figure 3-18	Deep-Draft Vessel Drawdown Event Identified in Willamette River at Station 1									

LIST OF ATTACHMENTS

Attachment A Daily Field Reports Attachment B SEDflume Sampling Summary

LIST OF ACRONYMS AND ABBREVIATIONS

cm ft ft/s mg/L mL	centimeter foot/feet feet per second milligrams per liter milliliter
ADCP AIS	acoustic doppler current profiler Automatic Information System
BODR	Basis of Design Report
CERCLA CTD	Comprehensive Environmental Response, Compensation, and Liability Act Conductivity, Temperature, and Depth
EPA eTrac	U.S. Environmental Protection Agency eTrac Inc.
HGL	HydroGeoLogic, Inc.
Integral	Integral Consulting, Inc.
PDI	Pre-Design Investigation
RD RM	Remedial Design River Mile
SIB	Swan Island Basin
TSS	total suspended solids
USGS	U.S. Geological Survey

This page was intentionally left blank.

HYDRODYNAMICS AND SEDIMENT DYNAMICS SURVEYS REPORT SWAN ISLAND BASIN PROJECT AREA PORTLAND HARBOR SUPERFUND SITE PORTLAND, MULTNOMAH COUNTY, OREGON

1.0 INTRODUCTION

This report summarizes hydrodynamics and sediment dynamics surveys conducted in the Swan Island Basin (SIB) Project Area of the Portland Harbor Superfund Site in Portland, Multnomah County, Oregon. Mott MacDonald, eTrac Inc. (eTrac), Delphis Solutions, and Integral Consulting, Inc. (Integral) performed the work in response to a request from HydroGeoLogic, Inc. (HGL) and on behalf of the SIB Remedial Design (RD) Group. The scope of work was proposed in the March 2022 Pre-Design Investigation (PDI) Work Plan, which the U.S. Environmental Protection Agency (EPA) conditionally approved on April 5, 2022. The scope of the surveys remained consistent with that detailed in the final PDI Work Plan that EPA fully approved in May 2022 (HGL, 2022a).

1.1 OBJECTIVES AND SCOPE

This hydrodynamics and sediment dynamics data collection program was conducted to support the evaluation of sediment movements (recontamination potential, cap stability). Hydrodynamics and sediment dynamics data collection and PDI studies are necessary to evaluate sources and pathways, including sediment resuspension as well as transport and deposition of contaminants of concern in sediments. The same studies will be applied during the RD to support evaluation of sediment resuspension and scour, recontamination potential, sediment cap stability, riverbank stability, and other aspects of overall RD. The primary goal of this phase of data collection was to obtain measurements of currents, suspended sediments, and general wave statistics within the SIB Project Area. The data collection program included the following activities:

- Obtained SEDflume near-surface sediment cores to provide surface sediment erodibility, grain size, and bulk density information;
- Obtained Acoustic Doppler Current Profiler (ADCP) measurements by bottom-mounted and vessel-mounted sensors to evaluate water velocities in the SIB and Willamette River;
- Obtained turbidity measurements using Conductivity, Temperature, and Depth (CTD) sensors, which were later converted to total suspended solids (TSS) concentrations following laboratory calibration, to demonstrate levels of suspended sediment present in SIB; and
- Obtained free surface elevation measurements using pile-mounted pressure gages to facilitate analysis of wind-waves and vessel wakes.

These surveys will inform the conceptual site model, facilitate development of hydrodynamic and sediment transport models, validate the hydrodynamic model, and evaluate site conditions for use in RD. Numerical models will be used for many purposes on the project, including evaluating exchange between SIB and the Willamette River, recontamination analysis, and cap stability analysis.

1.2 PROJECT AREA

The SIB Project Area is between approximately River Mile (RM) 8.1 and RM 9.2 on the northeast side of the Willamette River. The hydrodynamics and sediment dynamics surveys area encompassed SIB and a portion of the main Willamette River channel. To collect the necessary data to support the objectives of the surveys, the survey area begins in the Willamette River Channel at approximately RM 7.8 and extends up the Willamette River Channel to RM 8.8 and within the SIB to approximately RM 9.2.

1.3 DOCUMENT ORGANIZATION

This summary documents the field activities conducted at SIB and the adjacent Willamette River channel during the hydrodynamics and sediment dynamics surveys. The report is organized into the following sections:

- Section 1 presents an introduction, including the objectives and scope of the hydrodynamics and sediment dynamics surveys;
- Section 2 describes survey activities completed;
- Section 3 summarizes the data collected;
- Section 4 presents conclusions of the surveys; and
- Section 5 presents the references cited in this report.

2.0 SURVEY ACTIVITIES

This section provides details regarding survey activities mentioned in Section 1.1, including SEDflume sampling and analysis, ADCP measurements, CTD sensor measurements, and free surface elevation measurements. Survey activities were conducted over approximately 3 months, from February 21 to May 24, 2022. The surveys were conducted in a manner that satisfies the data quality objectives established in the Uniform Federal Policy-Quality Assurance Project Plan for SIB (HGL, 2022b). Hydrodynamic and sediment dynamics measurements were completed in accordance with industry best practices and with standard industry accuracy tolerances that are suitable for reliable use.

Deployment locations of fixed and mobile survey equipment, such as bottom-mounted and vesselmounted ADCPs, near-bottom CTD turbidity sensors and CTD profiles (casts), water samplers, and wave gages, are presented in this section along with the specifications and setup details of the survey equipment. Figure 2-1 illustrates river conditions (gage height and discharge) at U.S. Geological Survey (USGS) gage 14211720, located approximately 5 miles upstream of the SIB Project Area at the Morrison Street Bridge, during a 1-year period between July 2021 and June 2022. Both low and high discharges were observed during the surveys, with a peak river discharge of approximately 90,000 cubic feet (ft) per second. Flows reaching approximately 90,000 cfs do not represent extreme flows and are typically exceeded annually. Equipment specifications and deployment durations for all survey activities are presented in Table 2-1. Daily field reports for survey activities are included in Attachment A.

2.1 SEDFLUME

Integral performed a SEDflume sampling and laboratory study to determine sediment characteristics and develop erodibility parameters. Sediment samples were collected throughout SIB, as well as in the Willamette River channel near the SIB entrance. Samples were collected at 30 locations over a 3-day period from February 21 to February 23, 2022. SEDflume sample locations are shown in Figure 2-2. A 3.94 by 5.9 inch (10 by 15 centimeter [cm])¹ rectangular plastic core barrel was used to obtain a sediment sample by inserting the core into the hydraulic apparatus. The objective was to collect a core that is undisturbed throughout and is of sufficient length to process multiple test intervals.

The device and core barrel were lowered via pulley system onto the sediment bed. Once the apparatus was on the sediment bed, a hydraulic pressure system was applied to the core barrel to penetrate the sediment. The check valve was closed and bed material was retained during retrieval. Once the sample was collected, the apparatus was lifted to the surface of the water and safely returned to the boat where the sample was measured for recovery. The collected material and core barrel were removed from the apparatus. Core barrels were then securely transported to Integral's SEDflume laboratory in Santa Cruz, California, for further sample processing (see Section 3.1). Additional information regarding the SEDflume sampling techniques is provided in Attachment B, SEDflume Sampling Summary.

¹ Units have been converted from metric system to imperial system throughout the document for consistency. However, metric units are also included where appropriate to correspond with PDI Work Plan components.

2.2 ACOUSTIC DOPPLER CURRENT PROFILER

eTrac performed ADCP measurements using two stationary bottom-mounted ADCPs in SIB and a vessel-mounted ADCP along transects in SIB and the Willamette River. Figure 2-3 shows the locations of the bottom-mounted ADCPs (ADCP1 and ADCP2) and the transects surveyed by the vessel-mounted ADCP. The ADCPs measured current speed and direction in a prescribed number of bins vertically through the water column. ADCPs use a series of acoustic transducers that emit consistent rapid pulses and receive backscattered pulses from different directions, ricocheted off particles suspended in moving water. Deployments for both bottom-mounted and vessel-mounted ADCPs are described below.

2.2.1 Bottom-Mounted Acoustic Doppler Current Profiler

Bottom-mounted ADCPs were deployed for two periods of approximately 30 days each. Deployment 1 began on February 21, 2022. A service trip was made on March 24, 2022, to download data, refresh the batteries, and initiate Deployment 2. Final recovery of the ADCPs occurred on April 21, 2022. The bottom-most bin sampled by the ADCPs was at a height of approximately 1.35 m above the bed. The average water column depth interval (bin size) sampled by the ADCPs was 0.25 m. The ADCP sampling frequency was once every 10 minutes, providing six velocity measurements per hour.

As shown in Figure 2-1, river discharge was higher during Deployment 1 than during Deployment 2. ADCP2 recovered the full 60 days of data, whereas ADCP1 recovered only approximately 40 days. The reduced data collection period was reported in Field Change Request #6 dated May 20, 2022 (HGL, 2022c), which EPA approved on May 31, 2022. Bottom-mounted ADCPs were factory-calibrated prior to deployment.

2.2.2 Vessel-Mounted Acoustic Doppler Current Profiler

Vessel-mounted ADCP transect measurements were performed during initiation of bottommounted ADCP Deployment 1, over several days from February 19 to February 22, 2022. Raw ADCP data collected with the vessel-mounted unit provided current velocities in 1.64-ft (0.5meter) vertical bins, from 4.6 ft below the sensor to the riverbed, at a varying horizontal resolution.

The vessel-mounted ADCP transect surveys were conducted during the low-flow conditions occurring at the onset of bottom-mounted ADCP Deployment 1. The vessel-mounted ADCP transect data supplemented the bottom-mounted data by providing spatial coverage while bottom-mounted instruments were being deployed. As such, they were not intended to capture high-flow events. Vessel-mounted ADCP transect data provided a snapshot in time during low flows, and verified the low current speeds measured at the bottom-mounted stations. Since the bottom-mounted stations captured temporal variability of currents, only the bottom-mounted stations will be used for hydrodynamic model validation. Vessel-mounted ADCPs were factory-calibrated prior to deployment.

2.3 SUSPENDED SEDIMENTS

Delphis Solutions conducted turbidity measurements, which were used to estimate TSS concentrations, at two bottom-mounted stations and at vertical profiles taken during bottom-mounted sensor deployment and recovery. CTD sensors were mounted on each of the two bottom-mounted ADCP platforms provided by eTrac and are shown as CTD1 and CTD2 on Figure 2-4. Deployment schedules for these two near-bottom turbidity sensors coincided with Deployment 1 and Deployment 2 of the bottom-mounted ADCPs discussed in Section 2.2.1. The CTDs recorded near-bottom turbidity levels continuously for approximately 2 months. Bottom-mounted CTD sensors collected data at a fixed location approximately 20 inches above the riverbed. Sampling frequency for the bottom-mounted CTD sensors was six samples per hour (one measurement every 10 minutes).

Delphis Solutions also collected real-time CTD vertical profiles (casts) during deployment of the vessel-mounted ADCP transects to measure vertical turbidity profiles at different times and locations, including at the bottom-mounted sensor locations. Casts were primarily collected following the initial deployment on February 21, 2022. Additional casts were recorded prior to instrument recovery on March 24, 2022. Fifteen CTD profiles were collected at the locations shown in Figure 2-4, each for over an approximately 2-minute duration. CTD profile data were collected at 1-hertz frequency and included depth, turbidity, conductivity/salinity, temperature, and pH. The sensor was lowered slowly down through the water column from the support vessel to collect multiple data points through each vertical profile. CTD sampling over the side of the vessel (casts) collected measurements at 1 Hz frequency (once per second) as the instrument was lowered down into the water to the bottom, and back up from the bottom to the surface, resulting in sufficient samples to display vertical variation of turbidity.

To provide an additional quality check on CTD measurements, water grab samples were collected approximately 3 ft above the riverbed at ADCP and CTD cast locations during sensor deployment periods. An initial field measurement of each sample was performed using a handheld turbidimeter prior to samples being placed on ice for laboratory delivery. The water samples were delivered to ALS Environmental in Everett, Washington, within appropriate holding times. Laboratory analysis of water samples followed EPA-180.1 methodology for turbidity. TSS analysis followed the SM2540D (National Environmental Methods Index Standard Method 2540 D) methodology due to low sediment concentrations, which prevented use of EPA Method 160.2 and ASTM D 3977-97 as originally planned in the PDI Work Plan (HGL, 2023). The change in laboratory methodology for developing a correlation between turbidity and TSS was reported in Field Change Request #15 dated March 15, 2023 (HGL, 2022d), which EPA approved on March 15, 2023.

The bottom-mounted CTDs were calibrated against prepared concentrations of sediment per volume of water to correlate recorded turbidity levels throughout the deployment with TSS. Small sediment traps were attached to the frame of the bottom mount to collect ambient sediment in the water column to use as the source suspension when dried out. Insufficient sediment was captured in the water samples during the two deployments to provide adequate sediment for preparing sample concentrations. Therefore, sediment was collected from the sediment trap and oven- dried. Once dried, the sediment was carefully measured using a Mettler balance (#42 at ALS Environmental [calibration date: 7/13/21]), then poured into the respective 500 milliliter (mL) Nalgene bottles and labeled as to the concentration. Using a 500-mL graduated cylinder, 500-mL

of deionized water was placed into each Nalgene bottle and the bottle capped and shaken vigorously at the lab. Sediment concentrations of 10.9-milligrams per liter (mg/L), 27.8-mg/L, 63.6-mg/L, 106.7-mg/L, and 223.7 mg/L were prepared (Figure 2-5).

Based on turbidity measured in these prepared samples, the linear regression equation shown in Figure 2-6 was developed to convert turbidity measured by the CTDs to TSS. This equation was used to develop TSS values for turbidity data measured by both the bottom-mounted CTDs and the CTD casts. For reference, the correlation plot also includes the turbidity-to-TSS correlation obtained from the water samples, which generally follow the same trend as the reconstituted water samples but only cover a very small range of turbidity. Figure 2-6 also shows water sample collection information, field turbidity measurements, and laboratory measurements, as well as a photograph of a typical water sample. Turbidity measurements and correlation to TSS will be used only to calibrate and validate a sediment transport model; therefore, the turbidity data and estimated TSS will not be scaled or used in any direct calculations of sediment loading to the project site.

2.4 WAVES

Delphis Solutions deployed four independent logging, non-directional wave gages to record free surface elevations/gage depths for evaluation of wave conditions. Wave gage locations were modified due to accessibility issues, prior to deployment. Field Change Request #2 dated January 31, 2022 (HGL, 2022d), was submitted for moving Gage 2 from the U.S. Coast Guard dock to the Marine Consortium, Inc. dock, and Field Change Request #3 dated February 14, 2022 (HGL, 2022e) was submitted for moving Gage 1 from Berth 313 to Berth 315. Final locations of the wave gages are shown in Figure 2-3. The wave gages were installed for two separate deployments. The first deployment started on March 24, 2022. A service trip was made on April 21, 2022, to download data from the instruments, refresh the batteries, and initiate the second deployment. The wave gages were recovered on May 24, 2022. Gages were deployed in the same locations for both deployments. As shown in Figure 2-1, river discharge was lower during the first deployment. Wave gages were factory-calibrated prior to deployment.

Each wave gage was installed within an aluminum tube for additional protection and a rigid mounting platform then secured to a chain at an estimated elevation of approximately 3 ft North American Vertical Datum of 1988, based on depths provided at each deployment location. The chain was then suspended from a pile or whaler of opportunity at each location with the 30-pound anchor resting on the bottom and the chain drawn taut to dampen any vertical motion in the system. Each gage recorded free surface elevation data in 10-minute bursts, which included 4,096 samples per burst (sampling rate of 8 hertz), and an 88-second time gap between successive bursts that was assigned for data storage. The gages measured wave periods between 0.5 and 512 seconds, which was sufficient to measure relevant water surface fluctuations including wind-waves, vessel-generated Kelvin wakes (transverse and divergent surface wakes), and vessel-generated long period waves (pressure fields).

3.0 SURVEY RESULTS SUMMARY

This section provides a summary of the findings from the four different types of hydrodynamics and sediment dynamics surveys.

3.1 SEDFLUME

Integral performed laboratory analysis of 30 SEDflume cores distributed throughout SIB to determine sediment erodibility properties. Each core was analyzed in four to five vertical segments that were several cm thick to further assess variation in properties over depth. Sediment grain-size distributions were determined using laser diffraction analysis (International Organization for Standardization Standard 13-320). Figure 3-1 shows the spatial distribution of surface layer median grain size. Laboratory analysis shows that sediment within SIB is primarily silt, with varying clay and fine sand content. Sand content increases with proximity to the higher-energy environment of the Willamette River. Samples showed a mostly uniform grain-size distribution over depth. Figure 3-2 shows the spatial distribution of surface layer dry bulk density. Analysis indicates that most samples range in dry bulk density between 0.2 and 0.3 grams per cubic cm, consistent with weakly consolidated mud. Samples collected from the Willamette River channel tended to be slightly denser than samples from within the SIB interior. In addition, dry bulk density generally increased with depth due to consolidation with bottom layer values (located approximately 5.9 inches, or 15 cm, below the surface) on the order of 0.5 grams per cubic cm, consistent with partially consolidated mud. Dry bulk densities in the sub-surface depth intervals are shown in Attachment B, Appendix B, Figures B1 to B30.

Sediment erosive properties were derived from experimental measurements, as detailed in Attachment B. Figure 3-3a shows the spatial distribution of surface layer critical shear stress for erosion, defined as the bed shear stress required to initiate erosion. Most surface layer critical shear stress for erosion values are between 0.15 to 0.3 Pascals, or 0.003 to 0.006 pounds per square ft, consistent with loosely consolidated mud at the lower bound, and partly consolidated mud at the upper bound. Critical shear stress for erosion tends to increase with proximity to the Willamette River channel, which is logical given its higher energy and larger grain sizes. Samples located toward the upper portion of the site away from the mouth of SIB were the most erodible, while samples located near the ship berths at the end of Swan Island (more energetic area), were the least erodible. Critical shear stress for erosion also tends to increase with depth (Figure 3-3b), with typical values of approximately 0.6 Pascals (0.013 pounds per square ft) in the second vertical segment, immediately below the surface segment. Critical shear stresses below the surface layer are provided in Attachment B, Appendix B, Figures B1 to B30. Regression analysis of SEDflume data was further used to calibrate power-law formula parameters to describe site-specific erosion as a function of bed shear stress, as detailed in Attachment B. Maximum bed shear stresses are being calculated using a 3D hydrodynamic and sediment transport model for a wide range of flows including 100-year flows, and the modeling results will be reported in the Basis of Design Report.

3.2 ACOUSTIC DOPPLER CURRENT PROFILER

As discussed in Section 2.2, eTrac collected water velocity measurements using bottom-mounted and vessel-mounted ADCPs. Measured raw ADCP data were analyzed and processed using

manufacturer processing tools (Teledyne RDI) to generate time histories of horizontal and vertical velocity components at each vertical bin.

3.2.1 Bottom-Mounted Acoustic Doppler Current Profiler

Raw data collected by the bottom-mounted ADCPs were saved in Workhorse Binary Output format, which was processed using the Teledyne RDI WinADCP software package. The software uses trigonometric relationships to convert the raw data of current speed and direction in "ADCP" coordinates to "Earth" coordinates (north-south, east-west, and up-down). ADCP1 was functionally deployed during Deployment 1 from February 21, to April 1, 2022 (38 days of data collected). ADCP2 collected data for the entire 2-month duration.

Bottom-mounted ADCP measurements indicated low water velocities in SIB. The combination of extremely low turbidity, described in Section 3.3 (low back-scatter), and extremely low water velocities, resulted in moderate levels of noise that required further processing and filtering of the raw data. However, the measurements clearly demonstrated that velocities at both ADCP1 and ADCP2 are small, even during the river flow conditions observed on March 3, 2022 (approximately 90,000 cubic ft per second). Figures 3-4 and 3-5 show measured current speed and individual velocity components (north-south, east-west, and up-down) at vertical bins located 3 ft and 9 ft above the riverbed for ADCP1 and ADCP2, respectively. Current speeds below 0.10 ft per second (ft/s) were observed for the entire deployment period at both ADCP locations. SIB currents show minimal influence from river conditions (discharge, water level, fluctuating tides). Differences observed between the two ADCP stations are generally within 0.1 feet per second or less, which is considered a minimum detectable current speed considering the low turbidity in SIB that resulted in low backscatter and inter-beam correlation with the ADCPs. These velocities are all significantly below the threshold for sediment resuspension and transport, not being used in any direct calculations for any analysis; therefore, no further analysis of current speed differences between the two stations has been performed."

3.2.2 Vessel-Mounted Acoustic Doppler Current Profiler

Raw data in binary format was post-processed using the Teledyne RDI WinRiverII software. This software uses vessel navigation data and trigonometric relationships to convert raw ADCP soundings to real-world coordinates and velocities. As noted in Section 3.2.1, very low water turbidity and extremely low velocities in the SIB interior caused noise in the raw velocity data. Noise was higher for vessel-mounted ADCP measurements than for bottom-mounted instruments due to vessel movements. Additional filtering was performed by analyzing the return signal correlation between the ADCP's four beams, which is a measure of return signal quality. Raw data were then filtered by removing data that did not meet a minimum average beam correlation threshold.

Figures 3-6 and 3-7 show depth-averaged velocity transects taken within the Willamette River channel during periods of rising and falling tide, respectively. Currents measured during the rising tide period (Figure 3-6) were generally 0.5 ft/s or less with most transects showing currents moving downstream or mixed directions, with lower current speeds than during the falling tide conditions. USGS gage 14211720 (Morrison Street Bridge) data indicated a brief measured flow reversal

occurred during this rising time period. The highest overall current speeds, with velocities upwards of 1 ft/s and directed downstream, were measured during the falling tide period (Figure 3-7).

Figure 3-8 shows depth-averaged velocity transects sampled within SIB. Current speeds in SIB are low, generally 0.1 ft/s or less, with significant directional variation. Figure 3-8 shows some vectors with non-negligible velocities; however, these seemingly higher values contain excessive noise and occur most frequently in shallow water or near dock structures. No distinct velocity trends were identified in the vertical velocity profiles. Transects within SIB measured after 19:00 UTC on February 22, 2022, were taken during a period of negligible current speed and very low turbidity based on observations during the surveys, resulting in high levels of noise; hence, those measurements are not shown due to relatively low beam correlation caused by noise in the ADCP signal resulting from a combination of vessel movements, very low current speeds, and low backscatter (turbidity). Discharges were not measured within the ADCP transects. Discharge at Morrison St. USGS Station will be used to support model development, validation, and application to RD.

Although some of the vessel-mounted ADCP measurements (particularly in the SIB interior) contained noise due to extremely clear water as observed in water samples and very low velocities as observed in the field, measurements indicate extremely low-to-negligible velocities following further processing, and as documented in the bottom-mounted ADCP measurements.

3.3 SUSPENDED SEDIMENTS

Figure 3-9 shows time histories of TSS concentrations at the two near-bottom CTD sensors deployed within SIB, as well as at USGS gage 14211720 (Morrison Street Bridge). TSS values shown here represent estimates made based on measured turbidity. Both bottom-mounted CTD sensors recorded an approximate 2-week period of elevated turbidity, occurring during a highdischarge event in early March 2022. During this high flow period, a peak TSS concentration of roughly 140 mg/L was predicted at USGS gage 14211720, upstream in the Willamette River. Approximately 1.5 days later, near-bottom TSS predictions in SIB increased to a peak sustained concentration of roughly 80 mg/L. These measured turbidity data and estimated TSS values will be used to support numerical model validation. TSS concentrations in SIB, as well as at the USGS gage, were generally less than 10 mg/L during low-flow periods. Several short-duration periods of elevated TSS concentrations were predicted at the near-bottom sensors in SIB. No significant trends were observed between the influence of rainfall events or minor changes in measured velocities and the measured turbidity values at both stations. During the peak measured turbidity in SIB (approximately 80 mg/L at both stations), the majority of the lagoon appears to have similarly high turbidity, the vast majority of which was introduced by elevated TSS in the Willamette River. Observations show wide-scale elevated TSS in the SIB, as observed at both CTDs (which correlate well as observed in Figure 3-10); no other forcing exists (e.g., vessel traffic, stormwater discharges) which is capable of causing the elevated trend.

Figure 3-10 presents a closeup view of measured TSS concentrations for the deployment periods. TSS concentrations were consistent between the two gages, which were located more than 2,100 ft apart, with CTD1 located roughly halfway into the SIB interior. Figure 3-11 shows vertical TSS concentration profiles computed from turbidity measured during each of the CTD casts. "TSS concentration values during low flows were typically in a similar range (10 to 15 mg/L) as those

measured in the Willamette River at Morison St. Station during low flows. While some CTD casts showed increased surface turbidity, data generally showed a vertically uniform profile, with concentrations typically at or around 10 mg/L. Figure 3-11 also shows point measurements from the bottom-mounted CTDs at approximately the same time as the CTD casts were taken. The bottom-mounted CTD measurements are within the range of TSS variability observed in the casts. Causes of the elevated surface turbidity measurements are unknown. These elevated values have not been evaluated further because the turbidity measurements are not being used for direct calculations and are only used as part of model calibration.

Cast 13 was the only cast with elevated TSS at depth; this cast was taken near City of Portland Outfall M-1. Elevated turbidity at CTD cast 13 at depth indicates likely influence of the M-1 Outfall. CTD casts 5 and 15 did not observe elevated turbidity at depth which was observed at CTD cast 13 nearest the M-1 Outfall, which may indicate that solids discharging from the M-1 Outfall at the time of sampling were depositing in close proximity to the outfall. While elevated turbidity at cast 13 has not been correlated to outfall sediment load, the turbidity measurements are not being used for direct calculations and are only used as part of model calibration.

Elevated TSS in the Willamette River results in the elevated TSS delivered to SIB, which was observed in measurements. Overall, the turbidity in SIB is low, except for limited time periods during elevated river discharge. Independent laboratory and field analysis of water grab samples, all of which were taken during low flow periods, corroborated the CTD measurements, and indicated low turbidity values.

3.4 WAVES

Measured free surface elevation data were collected and processed to derive wave statistics and to quantify the influence of wind-waves and vessel wakes. Delphis Solutions performed preliminary processing of the burst data and provided raw gage depths (water column heights above the instruments) at all stations. Figure 3-12 shows time histories of measured gage depths at the four stations for Deployment 1 and Deployment 2.

Raw gage depths were processed to derive wave statistics using a high-pass filter. This filter removed fluctuations due to tides and changes in Willamette River discharge. Figure 3-13 filtered water level fluctuations at the four stations for Deployment 1 and Deployment 2, which includes both wind-waves and vessel wakes. Data indicates that wave troughs and crests vary only in the range between -0.2 ft and 0.2 ft, with occasional peaks occurring outside of this range. Stations 1 and 2 located on the Willamette River and the SIB entrance, respectively, recorded higher wave heights than Stations 3 and 4 in the SIB interior due to greater wind-wave activity and vessel traffic.

Filtered water levels were then used to derive general wave statistics using zero-crossing analysis, which is a technique that documents the number of times that the water surface elevation crosses the zero-elevation line and records wave crest and trough elevations. This technique is commonly used to determine the frequency, or the number of oscillations per unit time, of ocean waves and vessel wakes. Wave parameters derived included significant wave height, significant wave period, mean zero-crossing wave period, mean zero-crossing wave height.

Figures 3-14 and 3-15 show the timeline of significant wave height, maximum wave height, and mean zero-crossing wave period at the four stations during Deployment 1 and Deployment 2, respectively. Figures 3-14 and 3-15 show analysis of all water surface movements, which includes a combination of both wind-waves and vessel wakes, although the statistical contribution of vessel wakes to the significant wave heights is negligible. The data indicates that the SIB interior has a calm wave climate and that the main Willamette River is more energetic. Measured significant wave heights were below 0.1 ft inside SIB, and 0.25 ft in the Willamette River. Maximum wave heights at all stations were below 0.3 ft in SIB and 1.0 ft in the Willamette River. The calm conditions inside SIB were confirmed by observations made in the field by Delphis Solutions during gage deployment and recovery.

The free surface elevation data were also used to investigate the presence of vessel-generated surface wakes and long-period pressure field effects (i.e., drawdown) generated by deep-draft vessels. The heights and periods of vessel-generated surface (Kelvin) wakes are anticipated to be similar to those for measured wind-waves, according to Kelvin wake theory for vessels moving slowly in deep water. To identify wave activity from passing vessels, vessel locations and speeds in the SIB and Willamette River were documented using Automatic Information System (AIS) data. The data were supplied by Astra Paging, Inc., which included reports of general vessel particulars (e.g., length and beam), vessel position, and speed. The data were available at 30-second intervals.

Since vessel-generated surface (Kelvin) wake properties in the area are similar to those of windwaves, identification of vessel wakes in the free surface elevation record requires time-frequency analysis using a spectrogram approach. Spectrograms are used to analyze the frequency content of the wakes generated by a vessel's movement through the water using free surface elevations recorded at a station. The spectrogram displays the frequencies present in a water level signal over time. This analysis successfully identified passing vessel events in the data.

Figure 3-16 shows a summary of one of the observed vessel wake events recorded at Station 3, including the raw data (a), high-pass filtered data (b), and spectrogram (c). The spectrogram clearly shows a typical surface wake signature. Figure 3-16 also includes the vessel speed and passing distance (d) derived from AIS data. The vessel moved along the SIB centerline, towards the interior of the SIB, and passed approximately 400 ft from Station 3 while moving at approximately 12 knots. Stations 2 and 4 also recorded this passing event. The analysis demonstrated that vessel wakes are present in the wave data from the four stations; however, within SIB, vessel wakes are small and have characteristics similar to small wind-waves.

Figure 3-17 shows the largest vessel wake train observed at Station 3, and the heights and periods of the individual waves within the wake train. Heights and periods range from 0.05 to 0.33 ft, and 2.4 to 4.1 seconds, respectively. The heights and periods of the individual waves are within the range of heights and periods observed in the wind-waves. During the data collection period, winds were relatively mild with peak wind speeds up to 26 miles per hour during Deployment 1, and 19 miles per hour during Deployment 2. For reference, the PHSS Remedial Investigation/Feasibility Study (EPA, 2016) reports 100-year wind speeds in Portland Harbor to be approximately 69 miles per hour. No extreme winds were observed during the data collection period.

The AIS data and high-pass filtered free surface elevation data were also scrutinized to evaluate the potential presence of vessel displacement effects (long-period pressure field waves) generated by larger vessels. Figure 3-18 shows an example observed pressure field (drawdown) effect generated by a large cargo vessel transiting upstream in the Willamette River past Station 1. Results show raw data (a), low-pass filtered water level (b), and the ship's passing speed and distance from Station 1 (c). Figure 3-17 also shows the vessel's transit route. The vessel passed by Station 1 at approximately 650 ft, while moving upstream at approximately 13 knots. A maximum drawdown of roughly 0.3 ft was measured when the vessel was closest to Station 1. Data indicates that the vessel-generated displacement effects (long-period pressure fields) result in small water level oscillations and fluctuate very slowly. Measurements in the SIB interior (Stations 3 and 4) indicated no significant drawdown effects generated by larger vessels, which is anticipated due to low vessel speeds and limited deep-draft traffic. Analysis performed to identify wake events indicated minimal presence of wakes and given that their characteristics are very similar to wind-waves, vessel wakes will not control any analysis or design. As such, no further analysis was performed.

4.0 CONCLUSIONS

The data presented in this report are sufficient to fulfill the applicable data needs as envisioned and documented in the PDI Work Plan (HGL, 2022a) in supporting the development of the RD and the completion of the source control sufficiency assessment. The purpose of hydrodynamics and sediment dynamics surveys was to generate data necessary to facilitate analysis of recontamination potential and to demonstrate stability/persistence of the remedy under both river hydrodynamics and anthropogenic hydrodynamic effects. Field data collected will be used to either directly characterize the site or as input to, or for validation of, numerical modeling tools.

SEDflume sampling results show relatively consistent fine sediments with relatively consistent erodibility properties and slightly higher sand content in samples closer to the main river. Current velocities measured inside the SIB are less than 0.1 ft/sec during all phases of the tidal cycle and during varying river discharges. River hydrodynamic conditions (current velocities and water level fluctuations) are not likely to control either resuspension and scour of native sediments, or cap erosion protection design, for most of the SIB Project Area. TSS concentrations in the SIB were low during low-discharge periods and increased in a uniform manner in SIB as river discharges increased, indicating that material entering SIB is well-mixed, fine sediment. Wave activity within SIB is minimal; wind-waves during extreme wind events are likely to be the controlling wave condition for RD. The following section contains conclusions regarding the four survey activities discussed in this report.

4.1 SEDFLUME

Sediment properties vary both horizontally and vertically within the project area. The SEDflume results presented in this report characterize sediment property variability adequately to fulfill the applicable data needs as envisioned and documented in the PDI Work Plan (HGL, 2022a). Samples in the SIB generally consisted of predominantly silt, with small amounts of clay and fine sand with sand content increasing with proximity to the Willamette River. Data shows bed surface layer properties consistent with a loosely consolidated mud mixture and underlayers with properties consistent with a partially consolidated mud mixture. The data will be used to support refinement of the conceptual site model, PDI engineering studies including hydrodynamic and sediment transport modeling, and to develop the Basis of Design Report (BODR).

4.2 ACOUSTIC DOPPLER CURRENT PROFILER

ADCP current velocity data support the elements of the conceptual site model that describe the hydrodynamics of the SIB as quiescent within the interior lagoon with a transition to relatively higher velocities within the Willamette River. Both observations and measurements indicate current velocities generally below 0.1 ft/s in the SIB interior during both low and high river discharges. Vessel-mounted ADCP data collected within the Willamette River showed downstream directed currents with magnitudes upwards of 1 ft/s during falling tide conditions and weaker currents with mixed directionality during rising tide conditions.

The ADCP data showed current speeds throughout the entire deployment duration (including lower and higher river flows) well below the threshold for resuspension and transport of sediment. Since the RD will not be based on currents measured during low-flow condition, but rather extreme

events simulated with numerical models, the data have not been further evaluated. ADCP measurements will be used to support refinement of the conceptual site model, and support validation of numerical models to be used during PDI engineering studies, recontamination evaluations, and development of the BODR.

4.3 SUSPENDED SEDIMENTS

TSS concentration measurements showed a background of only roughly 10 mg/L throughout most of the sensor deployment (low flow periods), but with a period of elevated TSS concentration reaching 75 to 80 mg/L inside SIB during a high-discharge event. The similarity in TSS concentrations between the two stations (located 2,100 ft apart) indicate that sediments in the water column entering SIB are well-mixed fine material. The similarity noted between stations in the SIB here refers to an approximate visual comparison. Figure 3-10 demonstrates the strong correlation between TSS at each of the two stations, further demonstrating that the sediment introduced into SIB from the river is well mixed and relatively uniform in nature, confirming the presence of fine sediments with low settling velocities. No further correlation was performed since the measurements are not being used in direct calculations and only for numerical model calibration. Sediment transport model calibration and validation efforts and use of the correlated TSS will be described in the Recontamination Potential Technical Memorandum to be included in the Final Sufficiency Assessment Report. Total suspended solids estimates will support refinement of the conceptual site model, sediment transport model validation as part of recontamination potential evaluation, PDI engineering studies, and completion of the BODR. The bottom-mounted TSS time series estimates will be used for model calibration and validation.

4.4 WAVES

Maximum wave heights associated with wind-waves and vessel wakes were less than approximately 0.3 ft inside SIB and approximately 1.0 ft in the Willamette River. The free surface measurements indicate that wakes and wind-waves are small during typical conditions and unlikely to cause significant erosion or sediment transport. Displacement effects are not likely to affect shorelines; however, velocities under the hulls of moving deep-draft vessels (not measured during this program), in addition to vessel wakes, will be considered for cap stability during PDI engineering studies. Vessel-induced hydrodynamics will be predicted using numerical models. Maximum pressure field drawdown of approximately 0.3 ft was observed during a deep-draft passing vessel event in the Willamette River; however, measurements in the SIB interior did not show any significant drawdown effects due to low vessel speeds and limited deep-draft traffic. This data will be used to support refinement of the conceptual site model, support PDI engineering studies, and provide input to the BODR.

5.0 **REFERENCES**

- HydroGeoLogic, Inc. (HGL), 2022a. *Pre-Design Investigation Work Plan, Revision 3, CERCLA Docket No. 10-2021-001.* Prepared for the Swan Island Remedial Design Group, Overland Park, Kansas. May.
- HGL, 2022b. Uniform Federal Policy-Quality Assurance Project Plan, Revision 3, CERCLA Docket No. 10-2021-001. Prepared for the Swan Island Remedial Design Group, Overland Park, Kansas. May.
- HGL, 2022c. *Field Change Request #6, CERCLA Docket No. 10-2021-001*. Prepared for the Swan Island Remedial Design Group, Overland Park, Kansas. May.
- HGL, 2022d. *Field Change Request #2, CERCLA Docket No. 10-2021-001*. Prepared for the Swan Island Remedial Design Group, Overland Park, Kansas. January.
- HGL, 2022e. *Field Change Request #3, CERCLA Docket No. 10-2021-001*. Prepared for the Swan Island Remedial Design Group, Overland Park, Kansas. February.
- HGL, 2023. *Field Change Request #15, CERCLA Docket No. 10-2021-001*. Prepared for the Swan Island Remedial Design Group, Overland Park, Kansas. February.
- U. S. Environmental Protection Agency (EPA), 2016. Portland Harbor RI/FS, Final Remedial Investigation Report, Portland Oregon. United States Environmental Protection Agency Region 10, Seattle, Washington. February 8.

This page was intentionally left blank.

TABLES

Table 2-1 **Survey Equipment Summary** Hydrodynamics and Sediment Dynamics Surveys Report, Swan Island Basin Project Area, Portland, Oregon

Survey (Duration)	Equipment	Calibration	Image
Bottom-mounted ADCPs (Deployment 1: 2/21-3/24/2022 Deployment 2: 3/24-4/21/2022)	 Model: Teledyne RDI Workhorse Sentinel ADCP1 Frequency: 600 kHz (ADCP1) and 1200kHz (ADCP2) Beam Angle: 20° Orientation: Up-looking Beam Pattern: Convex Additional equipment specifications can be found at: http://www.teledynemarine.com/Lists/Downloads/sentinel_datasheet_lr.pdf 	Factory calibrated	
Vessel-mounted ADCP (2/19-2/22/2022)	 Model: Teledyne RDI Workhorse Rio Grande ADCP Frequency: 600 kHz Beam Angle: 20° Orientation: Down-looking Beam Pattern: Convex Additional equipment specifications can be found at: https://www.comm-tec.com/prods/mfgs/RDI/brochures/rio_grande_ds_lr.pdf 		
Turbidity Sensors – Bottom Mounted (Deployment 1: 2/21-3/24/2022 Deployment 2: 3/24-4/21/2022)	YSI EXO-2 ³ CTD sondes equipped with turbidity sensors. Additional equipment specifications can be found at: https:// <u>YSI EXO2 Multiparameter Water Quality</u> Sonde ysi.com	Calibrated against prepared concentrations of sediment per volume of water to correlate recorded turbidity levels throughout the deployment.	Turbidity — Wiper
Turbidity Sensors – Profiles (Casts) (2/21/-2/22 and 2/24/2022)	Hydrolab H20 ⁴ water quality CTD sonde equipped with a turbidity sensor. Additional equipment specifications can be found at: <u>http://web.mit.edu/1.75/www/FieldTrips/Series_4a_Manual.pdf</u>	2-point calibration against standards: 0.1 NTU (DI water) and 50-NTU standard)CTD standards are QC checked using the handheld turbidimeter with traceable calibration standards.	
Wave Gages (Deployment 1: 3/24- 4/21/2022 Deployment 2: 4/21- 5/24/2022)	 Model: RBR Solo35 wave gage Sampling Rate: 8 Hz Samples per ensemble: 4096 Mode: Wave Burst Ensemble interval: 10 minutes Additional equipment specifications can be found at: <u>https://rbr-global.com/products/compact-loggers/rbrsolo-d</u> 	Factory calibrated	RBR solo ³

Notes: ° = Degree Hz = hertz kHz = kilohertz NTU = nephelometric turbidity unit ADCP = Acoustic Doppler Current Profiler CTD = conductivity, temperature, depth DL = deionized

DI = deionized

QC = quality control

FIGURES

This page was intentionally left blank.

Black and Green Dashed Lines Show Deployment Extents for ADCPs and Wave Gages Respectively

NAVD88 - North American Vertical Datum of 1988 (5.28' NAVD88 = 0' Columbia River Datum (CRD)) USGS - U.S. Geological Survey UTC - Coordinated Universal Time

Sediment trap with recovered sediment samples and dried sediment from frame

Prepared sediment concentrations

Notes: TSS – Total Suspended Solids

Figure 2-5

Turbidity to TSS Preparation

Prepared on 8/8/2022 Hydrodynamics and Sediment Dynamics Surveys Report Swan Island Basin

Water Grab Samples

NAME (eTrac)	Date (UTC)	Time (UTC)	ORSP-North (X)	ORSP-North (Y)	LATITUDE	LONGITUDE	CTD CAST Number	WATER SAMPLE	Date (PST)	Time (PST)
WQ1	2/21/2022	23:32	7632785.07	701766.47	45° 34' 12.2398" N	122° 43' 24.1217" W	CAST1	None	None	None
WQ 2	2/22/2022	0:10	7635201.52	699967.52	45° 33' 55.1396" N	122° 42' 49.4716" W	CAST2	None	None	None
WQ 3	2/22/2022	0:17	7634523.8	700689.85	45° 34' 02.0855" N	122° 42' 59.2730" W	CAST3	SI-D1-WS-1	2/21/2022	16:00
WQ 4	2/22/2022	15:52	7632771.74	701740.42	45° 34' 11.9791" N	122° 43' 24.2990" W	CAST4	SI-D1-WS-2	2/22/2022	8:00
WQ 5	2/22/2022	16:10	7634585.71	700842.54	45° 34' 03.6093" N	122° 42' 58.4618" W	CAST5	SI-D1-WS-3	2/22/2022	8:10
WQ 6	2/22/2022	16:45	7633514.77	697856.81	45° 33' 33.8504" N	122° 43' 12.3574" W	CAST6	SI-D1-WS-4	2/22/2022	8:46
WQ 7	2/22/2022	17:10	7631633.05	698706.48	45° 33' 41.7251" N	122° 43' 39.1246" W	CAST7	SI-D1-WS-5	2/22/2022	9:10
WQ 8	2/22/2022	17:42	7630595.27	701822.28	45° 34' 12.1946" N	122° 43' 54.9156" W	CAST8	SI-D1-WS-6	2/22/2022	9:45
WQ 9	2/22/2022	18:30	7631465.02	700083.77	45° 33' 55.2729" N	122° 43' 42.0194" W	CAST9	SI-D1-WS-7	2/22/2022	10:34
WQ 10	2/22/2022	18:57	7632509.78	701508.85	45° 34' 09.6224" N	122° 43' 27.8906" W	CAST10	None	None	None
WQ 11	2/22/2022	19:20	7636780.12	698715.05	45° 33' 43.2044" N	122° 42' 26.8090" W	CAST11	SI-D1-WS-8	2/22/2022	11:20
WQ 12	2/22/2022	19:50	7633752.92	701308.2	45° 34' 07.9795" N	122° 43' 10.3440" W	CAST12	SI-D1-WS-9	2/22/2022	11:55
WQ 13	2/22/2022	20:00	7634633.37	700918.32	45° 34' 04.3701" N	122° 42' 57.8213" W	CAST13	SI-D1-WS-10	2/22/2022	12:00

Locations provided by eTrac

Water Grab Samples approximately 1-meter from bottom

Summary of Turbidity and Laboratory TSS Results

		Field Handheld Turbidimeter Results					Laboratory Results		CTD Turbidity (NTU)	
WATER SAMPLE	Date (PST)	Time (PST)	Turbidity (NTU) 1	Turbidity (NTU) 2	Turbidity (NTU) 3	Turbidity (NTU) AVG	Turbidity (NTU)	TSS (mg/L)	Depth Avgeraged)	~ 1m above bottom
SI-D1-WS-1	2/21/2022	16:00	4.84	4.74	4.84	4.81	4.2	6.80	13.3	18
SI-D1-WS-2	2/22/2022	8:00	3.49	3.16	2.92	3.19	2.9	5.00	4.37	3.4
SI-D1-WS-3	2/22/2022	8:10	10.95	9.12	12.98	11.02	6.2	12.00	7.59	9.1
SI-D1-WS-4	2/22/2022	8:46	2.25	2.75	2.58	2.53	2.1	3.30	6.12	2.7
SI-D1-WS-5	2/22/2022	9:10	2.28	2.26	2.74	2.43	2.3	U*	10.91	5.4
SI-D1-WS-6	2/22/2022	9:45	2.88	2.30	2.09	2.42	1.9	U	10.21	6.8
SI-D1-WS-7	2/22/2022	10:34	2.08	2.18	2.17	2.14	1.8	U	13.38	8.7
SI-D1-WS-8	2/22/2022	11:20	3.33	2.79	3.10	3.07	2.7	4.00	9.48	7.2
SI-D1-WS-9	2/22/2022	11:55	4.70	3.22	2.68	3.53	2.4	3.80	9.84	7.1
SI-D1-WS-10**	2/22/2022	12:00	3.09	2.95	2.94	2.99	2.9	3.80	27.75	34.3

* U - Analyte anlysed for but not detected at level above reporting limit of 3.0 mg/L

** Likely did not capture plume with water sampler due to drift. Vessel operator did not want to stay to long in area for safety. Understandable.

Typical Water Clarity in Samples

NTU – nephelometric turbidity unit

DI – deionized

TSS – Total Suspended Solids

CTD Turbidity to TSS Correlation

Hydrodynamics and Sediment Dynamics Surveys Report

Measured Current Speed and Velocity Components at ADCP1, 3 ft and 9 ft Above Riverbed

Measured Current Speed and Velocity Components at ADCP2, 3 ft and 9 ft Above Riverbed

Figure 3-12

ft - feet UTC - Coordinated Universal Time

> Prepared on:1/6/2023 Swan Island Basin

ft - feet UTC - Coordinated Universal Time

Event Time: 2022-03-24 22:15:13 UTC - 2022-03-24 22:34:13 UTC LOA=229 m, Beam=32 m, Draft=7.9 m Maximum Speed = 14.6 knots

Figure 3-18

Prepared on:1/6/2023 Swan Island Basin

Deep-Draft Vessel Drawdown Event Identified in Willamette River at Station 1

ATTACHMENTS

This page was intentionally left blank.

ATTACHMENT A

DAILY FIELD REPORTS

This page was intentionally left blank.

DAILY FIELD REPORT

DATE: _____ PLANNED ACTIVITY PERIOD:

2-21-22 21-22 Feb 2022

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Weather:					Partly Sunny		
Temperature:					50 F		
Wind:					ENE 15 mph		
Humidity:					60%		

PROJECT: Portland Harbor Superfund Site - Swan Island Basin Project Area **CONTRACT NUMBER:** DT2002

HGL Staff: None

Teaming Partners/Subcontractors: eTRac: Adam Taylor (Project Manager), Cody Gibson (Hydrographer), Jensen Haebler (Vessel Operator), Delphis TSS: Kevin Smith (Oceanographer)

Regulatory Oversight: None

Equipment On Site: Survey Vessel Spectrum, (1) Rio Grande ADCP, (2) Workhorse Sentinel ADCP, CTD Sensors

Work Performed by PDI Activity:

Hydro/Sed Dynamic Measurements

- 1) Launched survey vessel from Swan Island Launch Ramp followed by multibeam patch test calibration.
- 2) Bathymetric imagery collected to verify there were no obstructions present that could affect successful bottom-mount deployment or recovery.
- 3) Deployed two (2) bottom-mounted ADCPs in Swan Island basin at predetermined locations
- 4) Began vessel-mounted transects (see attached photos). In total, six (6) transects were performed. During the transect data collection, one (1) water quality sample and three (3) vertical conductivity, temperature, and depth measurements (CTD casts) were performed as required.

Quality Control Activities (including field calibrations): Multibeam patch test calibration

Health and Safety Activities: Daily safety briefing - Bottom Mount Deployment, CTD & Water Sampling

Problems Encountered/Corrective Action Taken: None

Other Possible Documentation (See SP Field Forms Folder for photos, notes, field data, tech memo):

- No deviations from the PDI-WP (if yes, describe in *Problems Encountered/Corrective Action Taken*)
- □ No samples collected (if yes, list above and provide sample sheets or spreadsheet of sample details)
- □ No calibrations performed (if yes, list above and provide calibration forms)
- No unusual events (if yes, describe above in *Special Notes*)
- □ No photographs taken (if yes, place jpgs on SP with the details (see Documentation Guidance) in a spreadsheet)
- □ No Field Measurements collected (if yes, provide them in *Work Performed by PDI Activity* above or provide a spreadsheet if measurements are numerous)

Special Notes: None

Planned Activities for the Next Day:

• Continue ADCP Vessel Transects and perform water sampling and CTD casts.

DAILY QUALITY CONTROL REPORT

Signature:

Title: Field Coordinator

eTrac

eTrac Inc. 617 S Knik-Goose Bay Rd, Ste C Wasilla, AK 99654

p: (415) 462-0421 f: (415) 480-2032 www.etracinc.com

Survey Field Notes:

ID	Time	Description
	2/21/22 11:10	CODY G., JENSEN H, AND ADAM T.AT SWAN ISLAND BOAT RAMP
	2/21/22 11:10	CONNECTED TO NTRIP "PDXA"
POSPAC START	2/21/22 11:12	POSPAC LOGGING
	2/21/22 13:03	ADCP 1 DEPLOYED AT (7634577.97E, E, 700828.92 N) 600KHZ ADCP, AAE RELEASE
	2/21/22 14:18	ADCP 2 DEPLOYED AT (7632764.24E, 701734.43N) 1200KHZ ADCP, EDGETECH RELEASE
	2/21/22 14:20	RETURN TO DOCK TO MOUNT ADCP AND PICK UP KEVIN S. BEGIN TRANSITS UPON MOUNTING
	2/21/22 15:09	ADCP SET UP, "SWAN ISLAND TRANSECTS"
	2/21/22 15:12	START FIRST TRANSECT "000", LINE 12 (0017),
	2/21/22 15:43	START SECOND TRANSETC "001", LINE 11 (0018), WQ SAMPLE 1 NEAR BEGINNING OF LINE
	2/21/22 15:58	START THIRD TRANSECT "002", LINE 16 NEW(0019)
	2/21/22 16:06	START 4TH TRANSECT "003, LINE 17 (0020)
	2/21/22 16:11	TRANSECT "004", FOR CTD "WC 2"
	2/21/22 16:15	TRANSECT "005", LINE 14 (0021)
	2/21/22 16:18	TRANSECT "006" FOR CTD "WC 3", WATER SAMPLE AS WELL
	2/21/22 16:25	TRANSECT "007", LINE 13 (0022)
	2/21/22 16:27	END COLLECTION FOR DAY
POSPAC STOP	2/21/22 16:28	END POSPAC LOGGING
	2/21/22 16:29	RETURN TO SWAN ISLAND BOAT LAUNCH

Photographic Log						
Taken By	Cody Gibson					
20220221_I	MAGE2.jpg					
Photographs date	2/21/2022 12:55					
stamped	2/21/2022 12:33					
Location of						
photographer (GPS	LAT					
coordinates)						
Direction photo was	N/A					
taken						
Subject of Photo	ADCP AND CTD					
	BOTTOM MOUNT					
Significance (why it was	ADCP AND CTD					
taken)	AFFIXED TO THE					
	BOTTOM MOUNT					
Photo ID number	20220221_IMAGE2.jpg					
	IMAGE SHOWS CREW					
	GETTING THE ADCP					
Brief description	AND CTD BOTTOM					
	MOUNT READY FOR					
	DEPLOYMENT					
Noteworthy						
characteristics (ex.						
sheen produced during						
collection)						

Photog	graphic Log
Taken By	Cody Gibson
2022022	1_IMAGE1.jpg
Photographs date	2/21/2022 12:46
stamped	2/21/2022 12.40
Location of	1 AT: 45 34 7 739 1 ONG: 122:
photographer (GPS	12 0 20
coordinates)	43 0.33
Direction photo was	Ν/Δ
taken	19/7
Subject of Photo	ADCP
Significance (why it was taken)	SHOWING ADCP MOUNT
Photo ID number	20220221_IMAGE1.jpg
Brief description	ADCP BOTTOM MOUNT, SHOWING THE ORIENTATION AND CLOSE UP OF THE ADCP USED
Noteworthy	
characteristics (ex.	
sheen produced during	
collection)	

DAILY FIELD REPORT

DATE:

03-24-2022 24-25 FEB

PLANNED ACTIVITY PERIOD:

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Weather:					Sunny		
Temperature:					56 F		
Wind:					ENE 5 mph		
Humidity:					20%		

PROJECT: Portland Harbor Superfund Site - Swan Island Basin Project Area **CONTRACT NUMBER:**DT2002

HGL Staff: None

Teaming Partners/Subcontractors: eTrac: Adam Taylor (Project Manager), Cody Gibson (Hydrographer),Matthew Larson (Vessel Operator), Delphis TSS: Kevin Smith (Oceanographer)

Regulatory Oversight: None

Equipment On Site: Survey Vessel Spectrum,(2) Workhorse Sentinel ADCP, CTD, (4) Wave Gauge Sensors

Work Performed by PDI Activity:

Hydro/Sed Dynamic Measurements

- 1) Take CTD Casts over Bottom-Mount Locations.
- 2) Recover ADCP bottom mounts from two (2) locations, retrieve data from ADCP and CTDs.
- 3) Re-Deploy two (2) bottom-mounted ADCP's and CTD's.
- 4) Deployment of four (4) wave gauges

Quality Control Activities (including field calibrations):None

Health and Safety Activities: Daily safety briefing – Bottom Mount Recovery and Deployment, CTD and Wave Gauge Deployment

Problems Encountered/Corrective Action Taken: None

Special Notes: None

Other Possible Documentation:

- No deviations from the PDI-WP (if yes, describe in *Problems Encountered/Corrective Action Taken*)
- □ No samples collected (if yes, list above and provide sample sheets or spreadsheet of sample details)
- No calibrations performed (if yes, list above and provide calibration forms)
- No unusual events (if yes, describe above in *Special Notes*)
- □ No photographs taken (if yes, place jpgs on SP with the details (see Documentation Guidance) in a spreadsheet)
- No Field Measurements collected (if yes, provide them in *Work Performed by PDI Activity* above or provide a spreadsheet if measurements are numerous)

Planned Activities for the Next Day:

None

Signature:

Title: Field Coordinator

eTrac

eTrac Inc. 617 S Knik-Goose Bay Rd, Ste C Wasilla, AK 99654

p: (415) 462-0421 f: (415) 480-2032 www.etracinc.com

Survey Field Notes:

	UTC	
ID	Time	Description
	3/24/22 14:55	CODY, ADAM, KEVIN AND MATT ON SV SPECTRUM TAKING CTD CASTS
	3/24/22 14:57	CTD & WC 1 20220324 E: 7632754.04 N: 701682.96
	3/24/22 15:05	CTD & WC 2 20220324 E: 7634531.59 N: 700825.39
	3/24/22 17:28	DEPLOYED WAVE GAUGE #3 E: 7633975.78 N: 701402.07
	3/24/22 17:48	DEPLOYED WAVE GAUGE #4 E: 7635716.43 N: 699287.65
	3/24/22 19:22	DEPOLOYED WAVE GAUGE # 1 E: 7634012.62 N: 698493.09
	3/24/22 19:24	DEPLOYED WAVE GAUGE #2 E: 7632097.40 N: 701099.26
	3/24/22 19:22	DEPLOYED ADCP BOTTOM MOUNT #2 EDGETECH, E: 7632765.02 N: 701733.16 1200KHZ
	3/24/22 19:41	DEPLOYED ADCP BOTTOM MOUNT #1 AAE, E: 7634581.73 N: 700832.00 600KHZ

Wave Gauge coordinates							
NAME	Northing	Northing Easting					
WAVE GAUGE 1	698493.09	7634012.62	Port of Portland				
WAVE GAUGE 2	701099.26	7632097.4	Vigor				
WAVE GAUGE 3	701402.07	7633975.78	Fred Devine				
WAVE GAUGE 4	699287.65	7635716	Vigor				
Notes:							

Datum is NAD83

Coordinate System is State Plane Oregon North, International Feet

DAILY FIELD REPORT

DATE:

03-24-2022 24-25 FEB

PLANNED ACTIVITY PERIOD:

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Weather:					Sunny		
Temperature:					56 F		
Wind:					ENE 5 mph		
Humidity:					20%		

PROJECT:Portland Harbor Superfund Site - Swan Island Basin Project Area **CONTRACT NUMBER:**DT2002

HGL Staff: None

Teaming Partners/Subcontractors: eTrac: Adam Taylor (Project Manager), Cody Gibson (Hydrographer),Matthew Larson (Vessel Operator), Delphis TSS: Kevin Smith (Oceanographer)

Regulatory Oversight: None

Equipment On Site: Survey Vessel Spectrum,(2) Workhorse Sentinel ADCP, CTD, (4) Wave Gauge Sensors

Work Performed by PDI Activity:

Hydro/Sed Dynamic Measurements

- 1) Take CTD Casts over Bottom-Mount Locations.
- 2) Recover ADCP bottom mounts from two (2) locations, retrieve data from ADCP and CTDs.
- 3) Re-Deploy two (2) bottom-mounted ADCP's and CTD's.
- 4) Deployment of four (4) wave gauges

Quality Control Activities (including field calibrations):None

Health and Safety Activities: Daily safety briefing – Bottom Mount Recovery and Deployment, CTD and Wave Gauge Deployment

Problems Encountered/Corrective Action Taken: None

Special Notes: None

Other Possible Documentation:

- No deviations from the PDI-WP (if yes, describe in *Problems Encountered/Corrective Action Taken*)
- □ No samples collected (if yes, list above and provide sample sheets or spreadsheet of sample details)
- No calibrations performed (if yes, list above and provide calibration forms)
- No unusual events (if yes, describe above in *Special Notes*)
- □ No photographs taken (if yes, place jpgs on SP with the details (see Documentation Guidance) in a spreadsheet)
- No Field Measurements collected (if yes, provide them in *Work Performed by PDI Activity* above or provide a spreadsheet if measurements are numerous)

Planned Activities for the Next Day:

None

Signature:

Title: Field Coordinator

Technical Memo

Project:	Swan Island: Sensor Deployment and Recovery
Date:	March 25,2022
Prepared For:	Scott Fenical Mott MacDonald (MM); Jeff Gadt HydroGeoLogic, Inc.
Prepared By:	Kevin Smith Principal Delphis Technical Support and Solutions, LLC. (DTSS)
Subject:	Wave Gauge Deployment 1 - Locations

Per client and Port request, this memo was prepared to summarize the wave gauge deployment that occurred around Swan Island near Portland, Oregon on March 24, 2022. These waves gauges were to be deployed concurrently with the bottom mounted ADCPs and CTDs deployed at the site in February but were delayed and deployed during the 30-day service trip of the bottom mounts. Wave gauges were deployed concurrently at four (4) locations within the site during this deployment effort as identified in in Figure 1.

Figure 1. Wave Gauge Locations – Swan Island, Oregon.

Each wave gauge is secured to a chain at an estimated elevation of approximately +3' NAVD88 based on provided depths for the site. The chain is in-turn suspended from a pile or whaler of opportunity at each location so the anchor is in contact with the bottom and the chain drawn taut to dampen any vertical motion in the system. The equipment is shown in Figure 2.

Figure 2. Suspended wave gauge equipment.

With the exception of Station 4, all gauges were deployed in their pre-planned locations. Station 4 was moved approximately 500 feet so uth to another exposed dolphin due to barge barges and line obstructing safe access to the planned location.

NAME	Date	Time (UTC)	ORSP-North (X)	ORSP-North (Y)	LATITUDE	LONGITUDE
Wave Gauge 1	3/24/2024	17:20	7634013	698493	45° 33' 39.72" N	122° 43' 32.74" W
Wave Gauge 2	3/24/2024	17:40	7632097	701099	45° 34' 05.45" N	122° 43' 33.75" W
Wave Gauge 3	3/24/2024	18:30	7633976	701402	45° 34' 08.95" N	122° 43' 07.46" W
Wave Gauge 4	3/24/2024	18:50	7635716	699288	45°33'48.55" N	122° 42' 42.19" W

While using ladder stand-offs to prevent slippage down the piles at Stations 1 and 2, the deployed wave gauges do not interfere with ladders or impinge navigational or terminal operational safety at any of the locations. These locations and mounting tactics were described prior to deployment. All gear will be removed from their locations at the completion of the project phase leaving no trace.

The following pages provide the deployed location with photograph for each gage.

WAVE GAUGE 1, OUTER (WILLAMETTE RIVER)

Station Depth: Approx. -22' NAVD88

WAVE GAUGE 2, ENTRANCE (End of PIER C)

Station Depth: Approx. -26' NAVD88

Station Depth: Approx. -14' NAVD88

WAVE GAUGE 4, Berth 306

Station Depth: Approx. -12' NAVD88
eTrac

eTrac Inc. 617 S Knik-Goose Bay Rd, Ste C Wasilla, AK 99654

p: (415) 462-0421 f: (415) 480-2032 www.etracinc.com

Survey Field Notes:

	UTC	
ID	Time	Description
	3/24/22 14:55	CODY, ADAM, KEVIN AND MATT ON SV SPECTRUM TAKING CTD CASTS
	3/24/22 14:57	CTD & WC 1 20220324 E: 7632754.04 N: 701682.96
	3/24/22 15:05	CTD & WC 2 20220324 E: 7634531.59 N: 700825.39
	3/24/22 17:28	DEPLOYED WAVE GAUGE #3 E: 7633975.78 N: 701402.07
	3/24/22 17:48	DEPLOYED WAVE GAUGE #4 E: 7635716.43 N: 699287.65
	3/24/22 19:22	DEPOLOYED WAVE GAUGE # 1 E: 7634012.62 N: 698493.09
	3/24/22 19:24	DEPLOYED WAVE GAUGE #2 E: 7632097.40 N: 701099.26
	3/24/22 19:22	DEPLOYED ADCP BOTTOM MOUNT #2 EDGETECH, E: 7632765.02 N: 701733.16 1200KHZ
	3/24/22 19:41	DEPLOYED ADCP BOTTOM MOUNT #1 AAE, E: 7634581.73 N: 700832.00 600KHZ

Wave Gauge coordinates								
NAME	Northing	Easting	Property					
WAVE GAUGE 1	698493.09	7634012.62	Port of Portland					
WAVE GAUGE 2	701099.26	7632097.4	Vigor					
WAVE GAUGE 3	701402.07	7633975.78	Fred Devine					
WAVE GAUGE 4	699287.65	7635716	Vigor					
Notes:								

Datum is NAD83

Coordinate System is State Plane Oregon North, International Feet

DAILY FIELD REPORT

DATE:

04-21-2022

PLANNED ACTIVITY PERIOD:

21 APR

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Weather:					Cloudy w/ showers		
Temperature:					50 F		
Wind:					SW 7 mph		
Humidity:					70%		

PROJECT: Portland Harbor Superfund Site - Swan Island Basin Project Area **CONTRACT NUMBER:**DT2002

HGL Staff: None

Teaming Partners/Subcontractors:, Jensen Haebler (Vessel Operator), Samantha Czwalina (Vessel Crew) Delphis TSS: Kevin Smith (Oceanographer)

Regulatory Oversight: None

Equipment On Site: Survey Vessel Spectrum,(2) Workhorse Sentinel ADCP, 2 EXO CTDs, (4) Wave Gauge Sensors, 1 Cast CTD, 1 Vandorn water grab sampler, 1 Handheld laboratory turbidimeter

Work Performed by PDI Activity:

Hydro/Sed Dynamic Measurements

- 1) Recover four (4) wave gauges from site locations, download data, refresh batteries and desiccant.
- 2) Re-Deploy four (4) wave gauges at same locations previously occupied.
- 3) Recover ADCP bottom mounts from two (2) locations, retrieve data from ADCP and CTDs.
- 4) Final recovery of the two (2) bottom mounts. Demobilize and disassemble equipment from frames

Quality Control Activities (including field calibrations):None

Health and Safety Activities: Daily safety briefing – Wave gauge recovery and deployment. Bottom Mount Recovery.

Problems Encountered/Corrective Action Taken: Damaged cast CTD. Not performed as ancillary data. Water grab sample taken at location confirmed similar low turbidity levels encountered on previous trips. No lab samples taken.

Special Notes: None

Other Possible Documentation:

- □ No deviations from the PDI-WP (if yes, describe in *Problems Encountered/Corrective Action Taken*)
- No samples collected (if yes, list above and provide sample sheets or spreadsheet of sample details)
- No calibrations performed (if yes, list above and provide calibration forms)
- No unusual events (if yes, describe above in *Special Notes*)
- □ No photographs taken (incorporated into the Station information pages)
- □ No Field Measurements collected (See field notes)

Planned Activities for the Next Day:

 None Signature:

Title: DTSS - Oceanographer

DAILY QUALITY CONTROL REPORT

Wave Gauge Deployed Locations

Bottom mounted ADCP/CTD as-deployed and final recovery locations (CTD Casts and transects were not performed)

13332 69th DR SE Snohomish, Washington 98296 Phone: (425) 773-0722 Email: <u>kevinsmith@delphis-tss.com</u>

For :

PROJECT: Portland Harbor Superfund Site - Swan Island Basin Project Area **CONTRACT NUMBER:**DT2002

General Timeline of events during Final Recovery of two (2) ADCP/CTD bottom mounts and Servicing of four (4) suspended wave gauges. Transcribed from field notes:

Times PDT

- 0600 Depart Hotel in Vancouver WA
- 0630 Arrive US Ecology Dock and begin bringing equipment from truck to dock
- 0710 eTrac boat arrives with Samantha Czwalina and Jensen Haebler
 - Mobilize required equipment for wave gauge servicing onto boat.
- 0715 Recover Wave Gauge Station 3 at US Ecology Dock
 - Download takes longer than planned (~30-minutes each)
 - Decision to collect all wave gauges and bring to dock to download while bottom mounts are recovered
- 0750 -Recover Station 1 Wave gauge. Leave suspension system in-place
- 0820 Recover Station 2 Wave gauge. Leave suspension system in-place
- 0830 -Recover Station 4 Wave gauge. Leave suspension system in-place
- 0845- Back at US Ecology dock to begin downloading wave gauges on multiple laptops
- 0900 eTrac heads out to pop- acoustic releases on bottom mounts. Success on inside station only. Outer Station (2) would not respond.
- 0940-eTrac and DTSS recover Station 1 (Inside station) and return to dock for demobilization
 - Wait on response from OARs for confirmation of release codes
 - Continue downloading waves gauges and refresh for deployment 2
- 1030 OARs confirms release codes. Station 2 buoy released from dock.
- 1045-eTrac and DTSS recover Station 2 (outer station at USCG) and return to dock for demobilization
- 1100 Depart dock to deploy Wave gauges
- 1105 Deploy Station 3 at former station
- 1125 Deploy Station 1 at former station
- 1140 Deploy Station 2 at former station

1155 – Deploy Station 4 at former station

1200 – Return to US ecology dock and clean up instrument and load ADCPs and bottom mounts onto eTrac boat. CTDs and support gear to DTSS.

1230 – DTSS performs water grab sampling from Ecology dock to confirm turbidity levels relatively the same as previous trips. No CTD cast could be conducted due to bad sensor on CTD. Turbidity of water taken with handheld meter from water grab sample. (thru column Turbidity 6.7 to 7.8 NTU). Clear samples.

1255 – eTrac (by boat) and DTSS (by truck) depart site for their home bases.

1655 – DTSS arrives in Snohomish, WA.

- Wash down and demobilize equipment

1800 to 2100 – begin downloads of CTDS (Approximately 1 hour each). Back up data.

Please see Instrument field deployment/recovery logs for specific settings or file information.

Project: DTSS No.: Client: Deployment No.:	Swan Island Wave Study 202202 HGL/Mott MacDonald 2	Deployment Date: Deployment Time (UTC): Est. Duration: Recovery Date:	4/21/2022 18:05 30 Days
Station:	1	Recovery Time (UTC):	
Description: Photos:	Deployed Sensor	Structure where the Sensor is Deployed	
Directions: Photo 1 - Down Photo 2 - NE Time: N/A Coordinates: N/A			
Deployment type:	Suspended from fixed chain w	ith bottom anchor (new hardware)	
Est. Water Depth:	-22 ft NAVD 88	May be adjusted upon review of Calculated levels	
Est. Sensor Depth:	3 ft NAVD 88		
Est. Height above Bottom:	25 ft		
Instrument Model: Instrument Serial Number: Depth Rating: Date of Calibration:	RBRsolo3 209246 20m 12/17/2021		
Sampling Rate:	8Hz		
Mode: Samples per Ensemble:	4096		
Battery Level: O-rings:	3.6v Lithium NEW lubed and checked		

O-rings: lubed Desiccant: NEW

System Enabled:

□ RBRsolo ³ 209246 ⊠	- C
Configuration Information Calibration Parameters	
Schedule	Sampling
Status: Schedule enabled	Mode: Wave V
Clock: 2022-04-21 17:17:34Z UTC Local	Speed: 8Hz V 2.9 Instrument altitude
Start: 4/21/2022 🗐 🗸 6:00 PM 🔹 🗌 Now	Duration: 4096 V 3.0 Mean depth of wate
End: 2022-06-18 😭 57.7 days 📓 +54.1 days	Interval: 00:10:00 Vave bandwidth: 0.0020 to 2.000 Wave periods: 0.50 to 512.00 sec
Power Battery: Lithium thionyl chloride v > Sample power details	
Memory used: <1%	

Delayed Start Time: 4/21/2022 18:00 UTC

Downloaded File: File Size: Time to Download:

Project:	Swan Island Wave Stud	dy Deployment Date:	4/21/2022
DTSS No.:	202202	Deployment Time (UTC):	18:50
Client:	HGL/Mott MacDonald	Est. Duration:	30 Days
Deployment No.:	2	Recovery Date:	
Station:	2	Recovery Time (UTC):	
Description:	Structure where the Sei	nsor is Deployed Structure where the Sensor is Deployed	
Photo:		1 2	
Directions:	H.		
Photo 1 - SE	1 14		
Photo 2 - NNF			
Time: N/A	C C C C C C		
Coordinates: N/A	FDC		
Deployment type:	Suspended from fixed c	bain with bottom anchor (new bardware)	
Est Water Denth:	-26 ft NA		
Est. Water Depth. Est. Sensor Depth:	20 ft NA 3 ft NA	ND 88	
Est. Jeisbi Deptil.	20 ft		
LSt. Height above bottom.	25 10		
Instrument Model:	RBRsolo3		
Instrument Serial Number:	209247		
Depth Rating:	20m		
Date of Calibration:	12/17/2021		
Sampling Rate:	8Hz		
Mode:	Wave burst		
Samples per Ensemble:	4096		
Battery Level:	3.6v Lithium NEW		
O-rings:	lubed and checked		
Desiccant:	NEW		

System Enabled:

□ RBRsolo ³ 209247 ⊠	- 8
Configuration Information Calibration Parameters	
Schedule	Sampling
Status: Schedule enabled	Mode: Wave 🗸
Clock: 2022-04-21 17:22:47Z UTC Local	Speed: 8Hz V 2.9 Instrument altitude
Start: 4/21/2022 🖉 6:00 PM 🜲 Now	Duration: 4096 V 3.0 Mean depth of wate
End: 2022-06-18 👔 57.7 days 👔 +54.1 days	Interval: 00:10:00 Wave bandwidth: 0.0020 to 2.000 Wave periods: 0.50 to 512.00 sec
Power	
Battery: Lithium thionyl chloride 🗸	
 Sample power details 	
(Memory used: <1%) Download	
Stop Revert settings Use auto-deploy settings	

Delayed Start Time: 4/21/2022 18:00 UTC

Downloaded File: File Size: Time to Download:

System Enabled:

□ RBRsolo ³ 209367 ⊠	
Configuration Information Calibration Parameters	
Schedule	Sampling
Status: Schedule enabled	Mode: Wave V
Clock: 2022-04-21 17:13:25Z UTC Local	Speed: 8Hz V 2.9 Instrument altitude
Start: 4/21/2022 📑 6:00 PM 🚔 🗌 Now	Duration: 4096 3 Mean depth of wat
End: 2022-06-18 👔 57.7 days 🚺 +54.1 days	Interval: 00:10:00 Vave bandwidth: 0.0020 to 2.00 Wave periods: 0.50 to 512.00 sec
Power	
Battery: Lithium thionyl chloride 🗸	
 Sample power details 	
Memory used: <1%	
Stop Revert settings Use auto-deploy settings	

Delayed Start Time: 4/21/2022 18:00 UTC

Downloaded File: File Size: Time to Download:

Project: Swan Island Wave Study DTSS No.: 202202 Client: HGL/Mott MacDonald Deployment Date: Deployment Time (UTC): Est. Duration: 4/21/2022 17:40 30 Days

Deployment No.: 2 Recovery Date: Station: 4 Recovery Time (UTC): Description: Deployed Sensor Structure where the Sensor is Deployed Photo: Directions: Photo 1 - Down Photo 2 - SSE Time: N/A Coordinates: N/A Deployment type: Suspended from fixed chain with bottom anchor (new hardware) Est. Water Depth: -12 ft NAVD 88 3 ft NAVD 88 Est. Sensor Depth: 15 ft Est. Height above Bottom: Instrument Model: RBRsolo3 **Instrument Serial Number:** 209368

Depth Rating:20mDate of Calibration:12/17/2021Sampling Rate:8HzMode:Wave burstSamples per Ensemble:4096

Battery Level: 3.6v Lithium NEW O-rings: lubed and checked Desiccant: NEW

System Enabled:

🔲 RBRsolo ³ 209368 🖾	- u
Configuration Information Calibration Parameters	
Schedule	Sampling
Status: Schedule enabled	Mode: Wave
Clock: 2022-04-21 09:33:46-08:00 UTC Local	Speed: 8Hz V 2.9 Instrument altitude
Start: 4/21/2022 🔍 6:00 PM 🛬 🗌 Now	Duration: 4096 S.O Mean depth of wate
End: 2022-06-18 👔 57.7 days 👔 +54.1 days	Interval: 00:10:00 Vave bandwidth: 0.0020 to 2.000 Wave periods: 0.50 to 512.00 sec:
Power Battery: Lithium thionyl chloride Sample power details	
Memory used: <1% Download Stop Revert settings Use auto-deploy settings	

Delayed Start Time: 4/21/2022 18:00 UTC

Downloaded File: File Size: Time to Download:

DAILY FIELD REPORT

DATE:

05-24-2022

PLANNED ACTIVITY PERIOD:

24 MAY

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Weather:			Overcast				
Temperature:			55°F				
Wind:			VAR				
Humidity:			50%				

PROJECT: Portland Harbor Superfund Site - Swan Island Basin Project Area **CONTRACT NUMBER:**DT2002

HGL Staff: None

Teaming Partners/Subcontractors: Delphis TSS: Kevin Smith (Oceanographer), Rene Trudeau (Vessel Operator - Gravity),

Regulatory Oversight: None

Equipment On Site: GRAVITY Survey Vessel MAZAMA, (4) Wave Gauge Sensors,

Work Performed by PDI Activity: Hydro/Sed Dynamic Measurements: Onsite at 0700 hrs and

departed site at 0845 hrs.

- 1) Final recovery of Recover four (4) wave gauges from site locations, download data. Demobilize.
- 2) Instruments returned to main office for cleaning, and data download before demobilizing.

Quality Control Activities (including field calibrations):None

Health and Safety Activities: Daily safety briefing – Wave gauge recovery.

Problems Encountered/Corrective Action Taken: No Problems encountered Operation lasted less than 1 hour

Special Notes: None

Other Possible Documentation:

- No deviations from the PDI-WP (if yes, describe in *Problems Encountered/Corrective Action Taken*)
- □ No samples collected (if yes, list above and provide sample sheets or spreadsheet of sample details)
- □ No calibrations performed (if yes, list above and provide calibration forms)
- No unusual events (if yes, describe above in *Special Notes*)
- □ No photographs taken (if yes, place jpgs on SP with the details (see Documentation Guidance) in a spreadsheet)
- □ No Field Measurements collected (if yes, provide them in *Work Performed by PDI Activity* above or provide a spreadsheet if measurements are numerous)

Planned Activities for the Next Day:

 None Signature: Title: DTSS - Oceanographer

DAILY QUALITY CONTROL REPORT

Wave Gauge Deployed Locations

Station 1 – Gauge RemovedStation 2 – Gauge RemovedStation 3 – Gauge RemovedStation 4 – Gauge RemovedReference SwanIsland-Wave Gauge Deployment 1- TechMemo.pdf(3/25/22) for as deployed photos.All material removed from stations. All stations in same state prior to deployment.

DAILY FIELD REPORT

DATE:

02-22-2022

PLANNED ACTIVITY PERIOD: 02-21 through 02-25-2022

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Weather:			Clear				
Temperature:			28°				
Wind:			NE 12+mph				
Humidity:			71%				

PROJECT: Portland Harbor Superfund Site - Swan Island Basin Project Area CONTRACT NUMBER: DT2002

HGL Staff: None

Subcontractors: Orbislogic LLC, Integral Consulting Inc., Gravity Marine LLC

Equipment On Site: RV Ingalls, SedFlume frame

Work Performed:

- 1) Meet at US Ecology Swan Island facility for tailgate.
- 2) Collect SedFlume box core samples for offsite sediment erosion analyses at locations; SF09, SF10, SF11, SF12, SF13, SF14, SF15 SF17, SF18. SF19, SF23
- 3) Store and secure accepted SedFlume cores and demob to US Ecology facility Swan Island.

Quality Control Activities (including field calibrations): RV Ingalls integrated GPS benchmark check (form not available)

Health and Safety Activities: Daily safety briefing - Cold Stress, SOP review

Problems Encountered/Corrective Action Taken: None

Special Notes: None

Other Possible Documentation: (See SP Field Forms Folder for photos, notes, field data)

- No deviations from the PDI-WP (if yes, describe in *Problems Encountered/Corrective Action Taken*)
- □ No samples collected (if yes, list above and provide sample sheets or spreadsheet of sample details, SP *Field Forms* folder)
- □ No calibrations performed (if yes, list above and provide calibration forms)
- No unusual events (if yes, describe above in *Special Notes*)
- □ No photographs taken (if yes, place jpgs on SP *Field Forms* folder with the details (see Documentation Guidance) in a spreadsheet)
- □ No Field Measurements collected (if yes, provide them in *Work Performed by PDI Activity* above or provide a spreadsheet if measurements are numerous)

Planned Activities for the Next Day:

Continue SedFlume core collection at remaining locations.

Title: HGL Field Coordinator

Signature:

Photo 1 Inserting SedFlume piston seal

Photo 2 Post processing SedFlume core

SedFlume Coring Photo Log

Photo Number (assigned by camera, or 1, 2etc. but it then	Taken By	Description	Direction	Date	Time	GPS Coordinates	
needs to be in the filename)	(Initials)					Lat	Long
1	JM	Inserting SedFlume piston seal	Down	2/22/2022	NA	NA	NA
2	JM	Post processing SedFlume core	Down	2/22/2022	NA	NA	NA

NA = not available

16	elezla	2 51	B-HOL	SESECULE J. MOORE	
	0800 :	MEEI	AT	is Ecocoly suran	_د
		152400	FACIL	174.	
		SRBISLO	610 -	Jor Moore	
		INTEC.	AC - F	FRANK 5×0434	
5	115		л	Ima ForBio	
		GhAU,	m -	CREG VATIO-	
	_		L,	ocan nerson	
	¥ J.	LOPE :	70 cd.	NTINGE COLLECTION	
	<u> </u>	Se	EDECUN	E BOY CONES FROM	7
AC	_	L	0 - 4710-0	SFOG ONWARDS.	
	0825;	TAILS	TE TO	MPIZTE, NEW	
		Calina	- SUPPL	UCY ON BUARS -	
		MOB	TO SF	09	
-	0350	ON L	OCATIO	~ SFO3, LATTER	,
2		DEATH	37.7	l(č
	<u> </u>	Fifst	ATEMPT	- REJECTED - 40 W	
		RECOJ	En.	- 25cm.	
	0905	5509	Séco-	as Artemir Lesection)
		Low	RECONCER	r - 22 cm	

and the state of the

2/22/22	466-518-5Décume J. Monte	alu(22 HGL-SIB-SESFLUME J. MOUNE
0974	SEOG THIRD ATTERPT ACCURITED	DEATH 30.9 Ft.
	3/cm RECOURT.	FILST ATTEMAT REJECTES,
	ets- 7634419.07	Low RECOURTER - 21 cm And
	NOR-TH 700536.99	SLORED.
0935	ON COLATION AT SELO	1035: SFIZ SECOND ATTEMPT REJECTED
	WATER DOPTH 28-7 Rt.	Low RECOUSER - 18 cm.
	E.R.S. ATTENOT RESECTES -	1047: SFIZ THURS ATTEMPT. GUSP
	LOLI RECONDERY - ZZCM	RECOVERNS - 34 CN BUT ONE
0950 :	SFID SECOND ATTEMAT	SIDE MASHES OUT DUE TO DEBRIS.
	ACCEPTES - 32 cm	1059 SFIZ FORTH ATTEMPT ACCEPTED.
	EAST : 7634562.12	32 CM RECOVERN
	NORTH : 70,728.05	EAST: 7634190.96
1005	MOB TO SELL WATER	NORTH: 701046-12
	DEPTIF 38.4FE	1115: MOB TO SE 13 WATER DEDTH
1009	FIRST ATTEMPT ALCENTES	38.4 Ft. FIRST ATTENDT
	31 cm RECOUSING	1146: ACCEPTED Blan RECORD
	EANT : 7634023.43	EAST = 7633607.44
	NOCT (- 1 70857 21	NSF-14: 7011-98.91
1023	MOB TO SFIZ WATCH	1205 MOR TO SEIL, WATER DOATH

2/22/22 H6-6-513-533 FLUNDE J. 46.	ne 1/22/22 HGL-SIB-SESFELLIE J. MOSRE
31.8RE FIRST ATTRIOT	1320: MOB TO SFIR. WATER DEPTH
ACCEPER, 35 cm RECOURT	39.4 FE . FIRST ATTEMPT
EATT : 7633 766.39	REJECTED - LOW RECOVERY 2DER,
NORTH : 701386.64	1330: SE 19 SECOND ATTEMAT RESERVED
1222: MDB TO SFIS WATCH	POUR RECOVERY 19cm
DEATH 39.5 RG. ACCEPT	1342: SF 19 SECOND THUD ATTEMPT
F.RST ATTEMPT 33 cm RECOVE	Ry REJECTES, POOR RECOVER 17 cm
EAST: 7633(27.73	1353 SF 19 FOLETH ATTEMPT,
NORTH: 701501.33	REJECTED, POOR RECOVERY 18cm
1242: MOB TO SFIT, WATCH	AND DISTURBED SIRFACE.
DEPTH 40.8 Pt. FIRST	1401. SEIG SIXIH ATTEMP, ACKERTED
ATTEMPT ACCEPTES. 33 CT	5 Zacn RECORD - THIS IS ACCENTED
Récovary.	AS THIS CONTRON HAS GIVEN POR
EAST : 7632770.83	RECOUDER IN FILE PREVIOLS ATTERPED
Norter: 701453.30	Etst: 7632499.55
1300: MOB TO SEIS, WATCH OTA	7 NOLEIT: 701226-59
28.6 GE EIRST ATTENDE	1415: MOB TO SEZ3. VATOR DOPTH 38.954
AicEpray. 34cm RECEVER	1 1435: FUST AMENDE ACCEPTER BOOM
EAST: 7632701.41	EAST - 7631828.78
Norfilt: 708781.83	Noh-14: 700941.04

2/22/22 HGL-SIB SESFLUME J. More 1500: Due TO WINDS INCREASING TO DUER 20 MPH. DECOE TO END COLECTION of CORES. VESSER WILL REFUT AND PEREARN MANTENALE, ORBES & INTECAME WILL POST PROCESS CONTENTED CONTA AND SECURE. 1700 An CREW AFF SITE PARE THE JAN . .

DAILY QUALITY CONTROL REPORT

DATE:

02-23-2022 PLANNED ACTIVITY PERIOD: 02-21 through 02-25-2022

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Weather:				Clear			
Temperature:				24°F			
Wind:				NE 8mph			
Humidity:				70%			

PROJECT: Portland Harbor Superfund Site - Swan Island Basin Project Area CONTRACT NUMBER: DT2002

HGL Staff: None

Subcontractors: Orbislogic LLC, Integral Consulting Inc., Gravity Marine LLC

Equipment On Site: RV Ingalls, SedFlume frame

Work Performed:

- 1) Meet at US Ecology Swan Island facility for tailgate.
- 2) Collect SedFlume box core samples for offsite sediment erosion analyses at locations; SF16, SF20, SF21, SF22, SF24, SF25, SF30, SF29, SF28, SF27, SF26
- 3) Store and secure accepted SedFlume cores and demob to US Ecology facility Swan Island.

Quality Control Activities (including field calibrations): RV Ingalls integrated GPS benchmark check (form not available)

Health and Safety Activities: Daily safety briefing, SOP review

Problems Encountered/Corrective Action Taken: None

Special Notes: None

Other Possible Documentation: (See SP Field Forms Folder for photos, notes, field data)

- No deviations from the PDI-WP (if yes, describe in *Problems Encountered/Corrective Action Taken*)
- □ No samples collected (if yes, list above and provide sample sheets or spreadsheet of sample details, SP *Field Forms* folder)
- □ No calibrations performed (if yes, list above and provide calibration forms)
- □ No unusual events (if yes, describe above in *Special Notes*)
- □ No photographs taken (if yes, place jpgs on SP *Field Forms* folder with the details (see Documentation Guidance) in a spreadsheet)
- No Field Measurements collected (if yes, provide them in Work Performed by PDI Activity above or provide a spreadsheet if measurements are numerous)

Planned Activities for the Next Day:

Continue SedFlume core collection at remaining locations.

Signature:

Title: HGL Project Manager

1/23/2	2 HGL-SID-SESFLUE J. Mosa=
0730:	MEET AT US ECOLOGO SWAN
	is cans face. 7.
1005	ORBISIOLIC - JOIS MOORE
	INTERPAR - FRANK STADA
	MAURI FABIO
	COM - CORT CHRISTOPHEL
	GRAVIT - GREG WATSON
	LOGAN NELSO,
0745	: Consult TAILLATE MEETING
ULL	NOR TO SELLO
2 2 2 2	an hoursen of SFIG april
0000	OFFTH 22.7 RF FIRST ATIENT
1210	Accustor 3 m RECOVERIN
0310.	54 2(32228 58
	NSC-14 221823 . 86
000	A P F SER DORA DEATH
0820	Mols 43 OF LO COMPLET
	31.5 of MAST ATTEMPS ALCOND
0825	31 cm RECOVERY.
	EAST : 7632376.38
	NURTH: 401630-12

,

.

2/23/22 HEL-SIB-JEJELUNE J. MOOR	HGL-SIB-SESFLUME 9. Mont
0835 MOB TO SEZI, WATTL DIATH	NO BOXTABE in EPARE - BROKEN
41.5Pt - FIRST ATTEMPT	SHARDS FOUND - POSSIBLY
REJECTES - LOW RECORDAN 2500	SMAJHED ON RIP-RAP SEEN
AND DISCUBED STRACE.	0~ SLOPE ADJACENT TO LOCATION
0351 - SF21, SECOND ATTEMPT	1008: 5 7 22 THURD ATTEMPT 15
ALCEPTED 3 CM RECUIEM.	~20 AF AWAY FROM TARGET AND
E457 : 7632052.94	Aun From RIP-RAP SUDE
NUSPETH: 701238.46	THURD AFTENDT 29cm - KESA
6900 WIND HAS PICKED of AND DUE	BUT TRA AGIAN ER A BETTER
TO WIND CHILL OF 16° F THE	RECONDY NOFE GRAVIELS IN
DECK IS ERBEE, NU SCILITEY	CORE.
SO BRIEF STOP WORK TO	1020: Fourth ATTEMPT - JUST GRAVEC
WARN of AND DEILE DECK	IN BASE of TUBE, < 2"DIAMETOR
ULTH CRIT.	- DECOIDE TO WORD THE 29 cm
DQ43: DZCK CLEARED of UCE. MOB TO	THIRS ATTEMPT.
SF22, WATEN DEDTH 31 Pt	1030: MOB TO SF 24. WAFER
2950' SF22 RAJT ATTENDT REJECTS	DEPTH 42 PE.
NO RECOURAN - DEBRIS?	1039: First ATTEMPT ACCEPSES 3000
1003: JE 22 JECONO ATTENTE	E457: 7631449.76 NORTH : 701248.67

2/23/22 HEL-SIB-SESFLUME J. MOSTE	163/22 HGL-SIB-SEJFLUME J. MOORE
1050; MOB TO SF25. 26 RE	REJECTED - NOCH WOOD/SILT
WATER DEDTH, NEAR RIP RAD	1135: SF26 THIRD ATTENT RESECTO
LOW RECOVERY CRAVER + WOOD	MAINLY WOOD DEBRIS, Som
DEGRIS ALSO ON STOEP SLEPE.	140: SE 26 FOLPTH ATTENT REJECTOS
1056: SZ 25, SZ CONS ATTEMAT MOUSO ~ 25 RE OFFSHORE TO	MAINLY WOOD DEBRIS, Jen.
AVOID RIP-RAP AND SLOPE.	RECOVERN. NECOVERN. SE 26 FIFTH ATTEMPT SAME
34 RE WATER DEVET	AJ PREWIOS - MAKE A CAU
ACCEPTED, 30 cm RECEVELM.	TO INTECRAL & NOT NACOUNTED
ENST: 7631479.19	1210: WHILE WAITIST FOR DECISION ON
1110: MOB TO \$526. WATCH	5F26 - MOTO TO SF 30 TO
DENTH 52.2RE ERST	1216 SF 30, TARbert COLATING
WITH WOOD DEALS AND SUT	0~ RIP RAP SLOPE - MUSE
UNUY ~ LOC - RECOUDEN.	WASEN DEPTH
1120: >F26)ZCONS ATTEMP (

2/23/22 HGG-SIB-JZSF4UME J.MOJPE	Haler HGC-SIB SESFLUME J. MOONE
1220: SF30 FIRST APPENDE RESERVE	IL- PECOUDEN KEEP BUT THY AGAIN FOR BETTER RECOVER
1225: SF30 SZCOND ATTENT	1348: SF28 TH.RO AFTERDE ACCEPTED
ACC21723, 30 cm, RECOVERY RM5 : 7630977.61	ATTENDT ALSO RETAINED FOR LAB
N)R54 : 70,831.50	ENST: 7630085.11 NIMTH: 700860.74
45.1 PE. FIRST ATTENT	1400: MOB TO SF27. WASTER
RESECTED LOU RECOVERN 24 cm	1420: SFZ 7 FIRST ATTEMPT, REJECTED
1249: SF29 SZGND ATTEMPT	LOW RECOURT AND WASHES DUT ON ONE SIDE.
ACCOPTES 50.5 Cm EAST: 7630850.29	1435 SE27 SECOND ATTEMPT REFERENCE
NINSH: 701479.47 1255, MDR TO SF28, WATCH	ONE SEDE
DEPTH 60.5 Rt. FRST ArrENAT	1445. SE 27 THANS ATTENDE , RESULTED
SILT DEBRIS.	ONE FILE. SEDI EN ATAIT RETERN
1329: SF28 SECOND ATBMPE	1435 JE LI IONALE APPENDICE 1000-10

2/23/22 146-6-	SIB - SEDELUNCE J. MOORE	113/22	HGC-SIB	JZJELUME	J. Monte
1446: SF27,	FIFTH ATTEMPT	1630 : 0	Califs SEc.	reed, vesse	2
ACCEPTOS	22 cm RECOUCHI	EGO	whit	DEMOBILIE	J ,
6-205 60	JSITION Cart ULTH	K	fu eléw	affsite.	
Som E W	JUD DEBRIJ				-
EAST :	7631184.00				
NORTH ;	705447.48		R		
1500 MOB	8404 TO SEZG TO				
ATTEMA	F. AGAIN, EVATER				
PEPTH	STI.7 P.E. ATTEMPT				
SIX P	EJECTOS, LOU RECOVERS				
AND 4	17HZ OUT ON and E			. /	
SIDE J	INE TO WOOD DEBR.S				
1519: SE26	SEVENTH ATTEMPT				
ALCER	ros an RECORENT				
EA37 :	7631654.73				
NIMI	: 70006.22				
1540. MBB B	Ack To us Ecoloby	· (
TO DELL	B Équinant AND				
colics					

Photo 1 RV Ingalls with SedFlume Core frame, looking NW

Photo 2 Example low recovery SedFlume core due to wood debris

SedFlume Coring Photo Log

Photo Number (assigned by camera, or 1, 2etc. but it then	Taken By	Description	Direction	Date	Time	GPS Coordinates	
needs to be in the filename)	(initials)					Lat	Long
1	JM	RV Ingalls with SedFlume Core frame	NW	2/23/2022	NA	NA	NA
		Example low recovery SedFlume core due to					
2	JM	wood debris	Down	2/23/2022	NA	NA	NA

NA = not available

Logan Neison

SAFETY MEETING/TRAINING LOG

Tailgate (daily)

Activity Hazard Analysis Pre-Task Hazard Analysis (prior to new task or operation) Site Safety Orientation (new personnel) □ Supervisor's (monthly) □ Supervisor's (weekly) UXO Awareness □ Asbestos Awareness Health and Safety Plan Addendum: _____ C Other: Date/Time: FEB 23, 2082 0730 Lis Client: SENA/ULGAR Location: Swaw is you BASIN - Porfland HARBIR JOD NO .: 172002 Meeting/training conducted by: Juss Moore JL 2/23/22 Work Activities: SEDFLUME CORE COLLECTION Safety / Training Topics Presented Chemical Hazards: PROJECT COCS - JEJUNEUT + JW Physical Hazards: OUER MATEN ACTIVITIES, A-FRAME OFERATIONS Specific Safety Topic(s): COLS STREFS, COMMUNICATION Specific Training Covered: Attendees Name Printed and Employee Number: Signature: Gree Watsin _____ Mauri Fabio Cont Christopher Frank Soudar .

ATTACHMENT B

SEDFLUME SAMPLING SUMMARY

This page was intentionally left blank.

SEDFLUME SAMPLING SUMMARY REVISION 0

REMEDIAL DESIGN SERVICES SWAN ISLAND BASIN PROJECT AREA CERCLA DOCKET NO. 10-2021-001

PORTLAND HARBOR SUPERFUND SITE PORTLAND, MULTNOMAH COUNTY, OREGON

Prepared for: Swan Island Basin Remedial Design Group

11107 Sunset Hills Road, Suite 400 Reston, Virginia 20190

March 2023

This page was intentionally left blank.

SEDFLUME SAMPLING SUMMARY REVISION 0

REMEDIAL DESIGN SERVICES SWAN ISLAND BASIN PROJECT AREA CERCLA DOCKET NO. 10-2021-001

PORTLAND HARBOR SUPERFUND SITE PORTLAND, MULTNOMAH COUNTY, OREGON

Contract Number: DT2002

Prepared for:

Swan Island Basin Remedial Design Group

Prepared by:

Integral Consulting, Inc. 505 Montgomery Street 11th Floor San Francisco, CA 94111

On behalf of: HydroGeoLogic, Inc. 11107 Sunset Hills Road, Suite 400 Reston, Virginia 20190 Chantilly, VA 20151

and

Mott MacDonald

March 2023

This page was intentionally left blank.

TABLE OF CONTENTS

Page

1.0	INTRO 1.1 1.2 1.3	DDUCT OBJEO PROJI REPO	TION CTIVES A ECT AREA RT ORGA	ND SCOPE A BACKGROUND NIZATION	1-1 1-1 1-1 1-1
2.0	SEDFI	LUME	SAMPLIN	IG AND TESTING PROCEDURES	2-1
	2.1	SEDF	LUME SA	MPLING PROCEDURE	
	2.2	SEDIN	MENT TES	STING AND ANALYSIS PROCEDURE	
		2.2.1	SEDflum	e Laboratory Configuration and Testing Procedure.	2-2
		2.2.2	Measurer	nent of Sediment Erosion Rate	2-2
			2.2.2.1	Determination of Critical Shear Stress	
			2.2.2.2	Power Law Regression	
		2.2.3	Measurer	nent of Sediment Bulk Properties	2-5
3.0	RESU	LTS			
	3.1	SEDF	LUME AN	ALYSIS SUMMARY	
	3.2	SEDF	LUME AN	IALYSIS CONCLUSIONS	
4.0	REFEI	RENCE	S		4-1
- Table 2-1SEDflume Sample Locations
- Table 2-2SEDflume Sample Information
- Table 2-3
 Parameters Measured and Computed During the SEDflume Analysis

LIST OF FIGURES

- Figure 1-1 SEDflume Sampling Locations
- Figure 2-1 Sediment Core Sampling
- Figure 2-2 Sediment Core Post-Retrieval
- Figure 2-3 Laboratory Configuration of SEDflume
- Figure 3-1 Sediment Core Erodibility Comparison

LIST OF APPENDICES

- Appendix A Particle Size Distributions
- Appendix B SEDflume Core Results

LIST OF ACRONYMS AND ABBREVIATIONS

%	percent
cm	centimeter
cm/s	centimeter per second
g/cm ³	grams per cubic centimeter
mm	millimeter
Pa	pascal
Δz	distance that sediment is raised during a particular measurement period
ρ	sediment bulk density
$ ho_{dry}$	dry bulk density
$ ho_w$	density of water
$ ho_{wet}$	wet bulk density
$ ho_{s}$	density of sediment particle
μm	micrometer
τ	bed shear stress
$ au_0$	bracketed shear stress value
τ_1	bracketed shear stress value
τ_{cr}	critical shear stress
$\tau_{\rm first}$	the lowest applied shear stress where erosion <i>did occur</i>
τ_{linear}	estimate of critical shear stress with a good linear regression fit
τ_{no}	the highest applied shear stress where erosion did not occur
$ au_{power}$	shear stress required to cause 10^{-4} cm/s of erosion
A	constant that is a function of the sediment bulk density and other difficult properties to measure, such as sediment geochemistry and biological influences
F	erosion rate
E FDA	US Environmental Protection Agency
LIA	0.5. Environmental Protection Agency
GPS	global positioning system
HGL	HydroGeoLogic, Inc.
IG Integral	% loss on ignition based on wet weight (ASTM International Method D7348-13) Integral Consulting, Inc.
m MC M _d _ M _w	constant that depends on sediment characteristics moisture content dry weight of sample wet weight of sample
n	constant that depends on sediment characteristics

LIST OF ACRONYMS AND ABBREVIATIONS (continued)

Orbislogic	Orbislogic Consulting
r r ² r ² _{thresh} RM	Pearson's r, which is a measure of the linear dependence between two variables coefficient of determination coefficient of determination of 0.7 River Mile
SIB	Swan Island Basin
Т	measurement time interval
W	water content

SEDFLUME SAMPLING SUMMARY SWAN ISLAND BASIN PROJECT AREA PORTLAND HARBOR SUPERFUND SITE PORTLAND, MULTNOMAH COUNTY, OREGON

1.0 INTRODUCTION

This sampling summary presents an overview of the SEDflume study conducted in the Swan Island Basin (SIB) Project Area of the Portland Harbor Superfund Site in Portland, Multnomah County, Oregon. Integral Consulting, Inc. (Integral) performed the work in response to a request from HydroGeoLogic, Inc. (HGL) and Mott MacDonald and on behalf of the SIB Remedial Design Group based on the requirements of the Portland Harbor Superfund Site Record of Decision (U.S. Environmental Protection Agency [EPA], 2017) and the Administrative Settlement Agreement and Order on Consent (EPA, 2021). The scope of work was proposed in the December 2021 Pre-Design Investigation Work Plan. The scope of the survey remained consistent with that detailed in the final Pre-Design Investigation Work Plan that was fully approved in May 2022 (HGL, 2022a).

1.1 OBJECTIVES AND SCOPE

Previous SEDflume sampling programs conducted in Portland Harbor included two samples at SIB: one near the SIB entrance and one in the SIB central interior (Sea Engineering, Inc., 2006). Analysis of those testing results indicated significant differences in sediment erodibility properties, including erosion rates and fines content. Because of the significant differences in sediment erodibility, a robust sampling program to support the Remedial Design was warranted. The SEDflume study provides data necessary to evaluate recontamination potential by providing inputs to hydrodynamic and sediment transport modeling.

This new SEDflume analysis dataset that represents the entire SIB as well as the main Willamette River channel at the mouth of SIB provides essential model information for hydrodynamic and sediment transport modeling. This information will be used to evaluate the fate and relative contribution of contaminated sediments resuspended/scoured from un-remediated areas within the SIB Project Area through both natural forces and anthropogenic forces, including dredging.

1.2 PROJECT AREA BACKGROUND

The SIB Project Area is between approximately River Mile (RM) 8.1 and RM 9.2 on the northeast side of the Willamette River. The SEDflume sampling area encompassed SIB and a portion of the main Willamette River channel. To collect the necessary data to support the study objectives, the survey area within the Willamette River channel begins at approximately RM 7.8 and extends within the Willamette River channel to RM 8.2 and within SIB to approximately RM 9.2 (Figure 1-1).

1.3 REPORT ORGANIZATION

This report is organized into the following sections:

- Section 1 presents the objectives and scope of the study,
- Section 2 describes SEDflume sampling and testing procedures,
- Section 3 summarizes SEDflume sampling activities and analysis results, and
- Section 4 presents the references cited in this report.

Accompanying appendices include the following:

- Appendix A presents particle size distributions as determined using laser diffraction analysis and quality control results.
- Appendix B presents graphical and tabular SEDflume analysis data for each core.

2.0 SEDFLUME SAMPLING AND TESTING PROCEDURES

SEDflume sampling activities were conducted from February 21 through 23, 2022. Integral conducted sampling activities with the support of Gravity Marine and Orbislogic Consulting (Orbislogic). Gravity Marine provided the vessel, support personnel, and apparatus used to collect each sediment sample. Orbislogic provided project oversight on behalf of HGL and Mott MacDonald. SEDflume analysis activities were conducted at Integral's SEDflume laboratory in Santa Cruz, California, from March 3 to 25, 2022. The following sections describe the activities completed and demonstrate achievement of the data quality objectives established for the SEDflume sampling and analysis program in the Uniform Federal Policy-Quality Assurance Project Plan for SIB (HGL, 2022b).

2.1 SEDFLUME SAMPLING PROCEDURE

Sediment cores to be used in SEDflume analysis were collected at 30 prescribed locations within and adjacent to the SIB Project Area as shown in Figure 1-1 and listed in Table 2-1. At each sediment coring location, a GPS device was used to position the vessel at a fixed sampling station. The 10-centimeter (cm) by 15-cm plastic, rectangular core barrel affixed to a pole with clamps was used to obtain the sediment sample by inserting the core into the hydraulic apparatus. The objective was to collect a core that was undisturbed throughout and of sufficient length to process multiple test intervals. The device and core barrel were lowered via pulley system onto the sediment bed (Figure 2-1). Once the apparatus was on the sediment bed, a hydraulic pressure system was applied to the core barrel to penetrate the sediment, a check valve was closed, and bed material was retained during retrieval. Once the sample was collected, the apparatus was lifted to the surface of the water and safely brought back to the boat (Figure 2-1), where the sample was measured for recovery, and the collected material and core barrel were removed from the apparatus.

After a core was successfully collected, it was inspected to determine if it would be accepted or if another collection attempt would be required. Acceptance criteria included overall length of recovered material; sample devoid of subsurface disturbance (e.g., wood waste); and levelness of the surface. If accepted, the outer portion of the core was cleaned, and the core was sealed for storage and photographed (Figure 2-2). Cores were orientated in an upright position with a full head of water to remain as undisturbed as practical during transport for analysis. If rejected, sample material was disposed of by Gravity Marine and Orbislogic personnel in accordance with the Waste Management Plan (HGL, 2022c), and another attempt was conducted. Sampling required as few as one and as many as seven attempts to recover an acceptable sample. Multiple attempts were required in instances where there was poor recovery length and difficult bed conditions to obtain sufficient sample retention. Sample collection dates, lengths as measured on the vessel, and number of attempts are summarized in Table 2-2.

The collection process produced acceptable samples for testing. Sediment samples were securely stored and shipped to Integral's SEDflume laboratory for testing. The recovered material remained intact and undisturbed during travel, resulting in four to five test intervals per sample.

2.2 SEDIMENT TESTING AND ANALYSIS PROCEDURE

This section provides descriptions of SEDflume testing and analysis procedures used in this study. Supplemental analyses of grain-size distribution using laser diffraction, water content, bulk density, and loss on ignition also were implemented at the beginning of each depth interval to quantify physical sediment characteristics.

2.2.1 SEDflume Laboratory Configuration and Testing Procedure

The SEDflume laboratory setup consists of a straight flume with an open bottom section through which a rectangular, cross-sectional core barrel containing sediment can be inserted (Figure 2-3). The main components of the flume are the water tank; pump; inlet flow converter, which establishes uniform, fully developed, turbulent flow; the main duct; test section; hydraulic jack; and the core barrel containing sediment (Figure 2-3). The core barrel, test section, flow inlet section, and flow exit section are made of transparent acrylic so that the sediment–water interactions can be observed visually. The core barrel has a rectangular cross section, 10 cm by 15 cm, and a length of 60 cm.

Water is pumped from an approximately 80-liter storage tank into a 5-cm-diameter pipe and then through the flow converter into the main duct. The flow converter changes the shape of the cross section from circular to rectangular while maintaining a constant cross-sectional area. A ball valve regulates the amount of water entering the flume so that the flow rates can be carefully controlled. The flume also has a small valve immediately downstream from the test section that opens to the atmosphere, preventing a pressure vacuum from forming and enhancing erosion.

At the start of each test, a core barrel and the sediment it contains were inserted into the bottom of the test section. The sediment surface is aligned with the bottom of the SEDflume channel. When fully enclosed, water is forced through the duct and test section over the surface of the sediment. The shear stress produced by the flow and imparted on the particles causes sediment erosion. As the sediment on the surface of the core erodes, the remaining sediment in the core barrel is slowly moved upward so that the sediment-water interface remains level with the bottom of the flume. An operator moves the sediment upward using a hydraulically controlled piston that is inside the core barrel. The jack is driven by a release of pressure that is regulated with a switch and valve system. In this manner, the sediment can be raised and made level with the bottom of the test section. The movement of the hydraulic jack can be controlled for measurable increments as small as 0.5 millimeter (mm).

2.2.2 Measurement of Sediment Erosion Rate

At the start of each core analysis, an initial reference measurement is made of the starting core length. The flume is then operated at a specific flow rate corresponding to a particular shear stress, and sediment is eroded (McNeil et al., 1996; Jepsen et al., 1997). As erosion proceeds, the core is raised, if needed, to keep the core's surface level with the bottom of the flume. This process is continued until either 10 minutes have elapsed or the core has been raised roughly 2 cm.

The erosion rate for the applied shear stress is then calculated as:

$$E = \frac{\Delta z}{T}$$
[1]

Where:

E = erosion rate $\Delta z =$ distance that sediment is raised during a particular measurement period T = measurement time interval

Because material is eroded and the core structure is broken down, repetitive erosion measurements at a given depth are not possible. The following procedures were performed for all cores to best determine the erosion rate at several different shear stresses and depths using only one core:

- 1. The core was inserted into the bottom of the SEDflume test section.
- 2. The total length of sediment in the core barrel was measured and recorded.
- 3. Two approximate 5-gram subsamples of sediment from the core surface were collected using a clean spoon to be used in particle-size distribution and bulk density measurements. Sediment sampling was constrained to the downstream (relative to the SEDflume flow direction) end of the sediment surface, to minimize potential scour effects.
- 4. Shear stresses (from low to high) were applied to the core's surface, and sediment erosion was measured if it occurred (0.5 mm of erosion in 10 minutes was considered quantifiable). Applied shear stresses started at 0.1 pascal (Pa) and were sequentially doubled until a given shear stress caused approximately 2 cm of erosion in 20 seconds, or a maximum of 5 cm was eroded in a given interval (defined as a continuous succession of increasing shear stress cycles where erosion is measured). Each shear stress cycle was applied for a minimum of 20 seconds and a maximum of 10 minutes. To the extent possible, no more than 2 cm of sediment was allowed to erode at a single shear stress.
- 5. Once the threshold (2 cm of erosion in 20 seconds, or a maximum of 5 cm of erosion in a single interval) was met, a new depth interval was started and the testing process of steps 3 and 4 was repeated.¹ Depth intervals are defined as a set of applied shears with an associated set of aliquots for physical parameter testing. Also, if the sediment composition changed noticeably in appearance or erosion properties, the depth interval was storped, sediment subsamples were collected, and a new depth interval was started (Step 4).
- 6. Where practical, at least three and up to five depth intervals were tested per core.

2.2.2.1 Determination of Critical Shear Stress

The critical shear stress of a sediment bed, τ_{cr} , is the applied shear stress at which sediment motion is initiated. In this study, it is operationally defined as the shear stress required to produce 0.001

¹ If a particular shear stress did not cause any observable erosion over a 10-minute period for consecutive depth intervals (e.g., less than 0.5 mm eroded in 10 minutes), that shear stress was removed from subsequent testing cycles and higher shear stresses were added, as appropriate, to attempt to measure at least three erosion rates.

mm of erosion in 1 second. This represents an erosion rate of 10^{-4} cm per second (cm/s), or roughly 1 mm of erosion in 15 minutes.²

Because it is difficult to measure τ_{cr} exactly at the 10^{-4} cm/s threshold, erosion was instead measured over a range of shear stresses designed to bracket the initiation of erosion threshold. The highest applied shear stress where erosion *did not occur* is defined by τ_{no} , and τ_{first} is the lowest applied shear stress where erosion *did occur*.

Using the measured erosion rate data in each depth interval, Integral employed a power law regression analysis (see Section 2.2.2.2) to determine the shear stress (τ_{power}) required to cause 10^{-4} cm/s of erosion. The bracketed shear stress values (τ_0 and τ_1) and τ_{power} were assimilated, and the critical shear stress of each interval was then chosen according to the following criteria (where τ_{no} and τ_{first} are determined directly from the SEDflume measurements):

- If $\tau_{no} \leq \tau_{power} \leq \tau_{first}$, then τ_{power} was the selected critical shear stress, τ_{cr} , for the interval.
- If $\tau_{no} \ge \tau_{power}$, then τ_{no} was the selected critical shear stress for the interval.
- If $\tau_{power} \ge \tau_{first}$, then τ_{first} was the selected critical shear stress for the interval.
- If $r^2 < r^2_{\text{thresh}}$, then τ_{linear} was selected as the critical shear stress for the interval.

The τ_{cr} criteria allowed for selection of critical shear stresses using the power law results where the regression analysis was in agreement with measured erosion rate data.

2.2.2.2 Power Law Regression

Following the methods identified in the article titled "Effects of Particle Size and Bulk Density on Erosion of Quartz Particles" (Roberts et al., 1998), the erosion rates for sediment can be approximated by the power law regression:

$$E = A \tau^n \rho^m$$
 [2]

Where:

Ε	=	erosion rate (cm/s)
τ	=	bed shear stress (Pa)
ρ	=	sediment bulk density (grams per cubic centimeter [g/cm ³])
<i>A</i> , <i>n</i> , and <i>m</i>	=	constants that depend on sediment characteristics

The equation used in the present analysis is an abbreviated variation of Equation 2:

$$E = A \tau^n$$
 [3]

Where the constant A is a function of the sediment bulk density and other difficult properties to measure, such as sediment geochemistry and biological influences.

 $^{^{2}}$ Though other definitions of critical shear stress erosion rate thresholds can be argued (and considered valid), the value of 10^{-4} cm/s threshold is used here for consistency with previous SEDflume efforts and to keep testing times to a practical duration.

The variation of erosion rate with density typically cannot be determined for field sediment because of natural variation in other sediment properties (e.g., mineralogy, particle size, and electrochemical forces). Therefore, the density term from equation number 3, for a particular interval of approximately constant density, is incorporated into the constant A.

For each depth interval, the measured erosion rates (*E*) and applied shear stresses (τ) were used to determine the *A* and *n* constants that provide a best-fit power law curve to the data for that interval. Good regression fits of these parameters, where they existed, were then used to estimate the critical shear stress (τ_{linear}) for the respective intervals. A coefficient of determination (r²) of 0.70 was used as a threshold criterion (r²_{thresh}) for acceptance.³

2.2.3 Measurement of Sediment Bulk Properties

In addition to the measurement of erosion rates during the analysis, sediment subsamples were periodically collected at depth to determine the water content, particle size distribution, and loss on ignition of the sediment in each core. Water content and loss on ignition values are incorporated into the determination of wet and dry bulk densities. Subsamples were collected from the undisturbed core surface (prior to analysis) as well as the sediment surface at the beginning of each subsequent depth interval. Samples were weighed, dried, and reweighed to determine the mass of water. Samples were then subjected to sufficient heat to ignite the organic material to determine loss on ignition.

Wet bulk density was determined by first measuring the wet and dry weight of the collected sample to determine the water content (W) (Håkanson and Jansson, 1983):

$$W = \frac{M_w - M_d}{M_w}$$
[4]

Where:

W = water content M_w = wet weight of sample M_d = dry weight of sample

For the determination of wet bulk density, water content in this formulation has a value from 0 to 1. Wet bulk densities were then determined using the method described in the article titled "Principles of Lake Sedimentology" (Håkanson and Jansson, 1983):

³ The coefficient of determination, r^2 , is a function of Pearson's *r*, which is a measure of the linear dependence (correlation) between two variables. Pearson's *r* can be positive or negative and is a value between -1 and +1. The more common usage of the correlation coefficient is to square Pearson's *r*, r^2 , and report that value.

$$\rho_{wet} = \frac{(100 * \rho_s)}{100 + (100\% * W + IG)(\rho_s - 1)}$$
[5]

Where:

$ ho_{dry}$	=	wet bulk density
$ ho_{\scriptscriptstyle W}$	=	density of water (assumed 1 g/cm ³)
$ ho_{wet}$	=	wet bulk density
$ ho_{s}$	=	density of sediment particle (assumed 2.65 g/cm ³)
IG	=	percent (%) loss on ignition based on wet weight (ASTM International
		Method D7348-13) (ASTM International, 2007)

Dry bulk densities are based on the moisture content (MC) defined by ASTM D2216-05 as:

$$MC = \frac{M_w - M_d}{M_d} \tag{6}$$

This formulation represents the ratio of water to solids. Using the MC value, dry bulk densities were calculated using the following relationship:

$$\rho_{dry} = \frac{\rho_{wet}}{1 + MC}$$
[7]

Particle size distributions were determined using laser diffraction analysis (Appendix A). Sediment samples were screened with a 2,000-micrometer (μ m) sieve to remove large pieces of organic material, dispersed in water, and inserted into a Beckman Coulter LS 13-320 laser diffraction analyzer. Each sample was analyzed in three, 1-minute intervals, and the results of the three analyses were averaged automatically by the instrument. The Beckman Coulter LS 13-320 measures volumetric distribution of particles from 0.4 to 2,000 μ m. Caution should be taken when comparing directly to more narrowly ranged instruments such as a laser *in situ* scattering and transmissometry instrument or traditional mass-based sieve and hydrometer studies. A laser *in situ* scattering and transmissometry instrument measures aggregated particles in the natural environment and has detection ranges different from that of the desktop instrument. Use of the Beckman Coulter involves the disaggregation of particles, so any direct comparison must consider these factors.

The relationships used to determine sediment bulk properties are summarized in Table 2-3.

3.0 **RESULTS**

Graphical depictions of core-specific erosion rate, particle-size distribution with depth, and wet bulk density and median particle size with depth are provided in Appendix B (Figures B-1 through B-30). Erosion rates at applied shear stresses are shown with depths next to an image of the core. The indication of no erosion measured refers to the thin dotted line at 10^{-5} cm/s. As described in the previous sections, values of 10^{-4} cm/s are defined as the erosion rate related to minimum measurable critical shear stress.

Appendix B (Figures B-1 through B-30) also includes summary tables of median particle sizes, wet and dry bulk densities, loss on ignition, greatest applied shear with no erosion measured, first applied shear with erosion measured, and two derived critical shears for each core. The column labeled "Recommended τ_{cr} " provides the value derived from the criteria described in Section 2.2.2.1. The power law-derived critical shear was determined using the *A* and *n* values described in Section 2.2.2.2. Each figure includes a table of the derived constants *A* and *n* resulting from the power law fit, along with the r² value for each interval, for each core. Values of *A* can vary by orders of magnitude. Values of *n* typically range from 1 to 4, and values outside of this range may be indicative of a spurious data fit.

3.1 SEDFLUME ANALYSIS SUMMARY

Qualitative descriptions of the type of erosion for each core are provided in the following sections, as necessary, to highlight changing processes. Erosion of the core surface generally occurs via individual particles becoming suspended, aggregated clumps of sediment (clump erosion) breaking off causing an uneven surface, or sheets of material peeling off the sediment bed. Non-cohesive materials such as sands will erode as individual particles. Fine-grained sediment such as silts and clays can bind together and will move together under an applied shear. Cracks and uneven sedimentation may cause this bonded sediment to move together as clumps. Sediment deposited cyclically may deposit in uniform layers and can erode as thin sheets.

Core SF01

Core SF01 was collected on February 21, 2022, as described in Table 2-2, and resulted in the recovery of 30 cm of sediment. The core contains light orange-brown to gray-brown clayey silt with occasional worm burrows in the upper 10 cm of sediment. The surface of the core contains traces of small worm casings. A photograph of Core SF01 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Appendix B, Figure B-1(1). The number listed in parenthesis after the B series figure number, for example, Figure B-1(1), identifies the image or table in the figure that is being described.

Shear stresses ranging between 0.1 and 6.4 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.14 and 0.67 Pa throughout all depths tested, with an interval average critical shear stress of 0.45 Pa (Figure B-1(2)). Average median grain size and wet bulk density were 15.03 μ m and 1.10 g/cm³, respectively (Figure B-1(2)). Median particle size remained in the silt range throughout the core (Figure B-1(3)). Bulk density increased slightly at depth, while the particle size distribution remained relatively steady (Figure B-1(4)).

Sediment generally eroded in small to medium (1/8-1/4 cm) clumps at the lower applied shear stresses, and larger (1/2 cm) clumps at the highest applied shear stress (6.4 Pa). Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-1(5)).

Core SF02

Core SF02 was collected on February 21, 2022, as described in Table 2-2, and resulted in the recovery of 34 cm of sediment. The core contains light orange-brown to gray-brown clayey silt with occasional worm burrows and some organic debris. The surface of the core contains traces of small worm casings. A photograph of Core SF02 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-2(1).

Shear stresses ranging between 0.1 and 12.8 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.14 and 0.75 Pa throughout all depths tested, with an interval average critical shear stress of 0.48 Pa (Figure B-2(2)). Average median grain size and wet bulk density were 16.55 μ m and 1.15 g/cm³, respectively (Figure B-2(2)). Median particle size remained in the silt range throughout the core (Figure B-2(3)). Bulk density increased slightly at depth, and the particle size distribution increased slightly beyond 15.6 cm depth (Figure B-2(4)).

Sediment generally eroded in plumes and small (1/8 cm) clumps. Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-2(5)).

Core SF03

Core SF03 was collected on February 21, 2022, as described in Table 2-2, and resulted in the recovery of 32 cm of sediment. The core contains orange-brown to gray-brown clayey silt with occasional worm burrows and trace organic debris. The surface of the core contains traces of very small worm casings. A photograph of Core SF03 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-3(1).

Shear stresses ranging between 0.1 and 6.4 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.16 and 1.41 Pa throughout all depths tested, with an interval average critical shear stress of 0.65 Pa (Figure B-3(2)). Average median grain size and wet bulk density were 13.61 μ m and 1.10 g/cm³, respectively (Figure B-3(2)). Median particle size remained in the silt range throughout the core (Figure B-3(3)). Bulk density increased slightly at depth while the particle size distribution remained relatively consistent (Figure B-3(4)).

Sediment generally eroded in small to medium (1/8-1/4 cm) clumps at the lower applied shear stresses and larger (1/2 cm) clumps at the highest applied shear stress (6.4 Pa). Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-3(5)).

Core SF04

Core SF04 was collected on February 21, 2022, as described in Table 2-2, and resulted in the recovery of 28.5 cm of sediment. The core contains orange-brown to gray-brown clayey silt with some worm burrows and trace organic debris. A small bivalve was found at a depth of 2.6 cm. A

photograph of Core SF04 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-4(1).

Shear stresses ranging between 0.1 and 3.2 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.17 and 0.35 Pa throughout all depths tested, with an interval average critical shear stress of 0.26 Pa (Figure B-4(2)). Average median grain size and wet bulk density were 12.53 μ m and 1.17 g/cm³, respectively (Figure B-4(2)). Median particle size remained in the silt range throughout the core (Figure B-4(3)). Bulk density increased gradually at depth, and the particle size distribution remained relatively consistent (Figure B-4(4).

Sediment generally eroded in small to medium (1/8-1/4 cm) clumps and plumes at the lower applied shear stresses and larger (1/2-1 cm) clumps and plates at the higher applied shear stresses (3.2 Pa). Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-4(5)).

Core SF05

Core SF05 was collected on February 21, 2022, as described in Table 2-2, and resulted in the recovery of 30 cm of sediment. The core contains orange-brown to gray-brown clayey silt with some worm burrows. The surface of the core contains traces of small worm casings. A photograph of Core SF05 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-5(1).

Shear stresses ranging between 0.1 and 6.4 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.16 and 0.7 Pa throughout all depths tested, with an interval average critical shear stress of 0.48 Pa (Figure B-5(2)). Average median grain size and wet bulk density were 14.62 μ m and 1.17 g/cm³, respectively (Figure B-5(2)). Median particle size remained in the silt range throughout the core (Figure B-5(3)). Bulk density increased gradually at depth, and the particle size distribution decreased slightly (Figure B-5(4)).

Sediment generally eroded in small to medium (1/8-1/4 cm) clumps and plumes at the lower applied shear stresses and larger (1/2-1 cm) clumps at the higher applied shear stresses. Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-5(5)).

Core SF06

Core SF06 was collected on February 21, 2022, as described in Table 2-2, and resulted in the recovery of 35 cm of sediment. The core contains orange-brown to gray-brown clayey silt with trace biotic activity and organic debris. The surface of the core contains traces of small worm casings. A photograph of Core SF06 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-6(1).

Shear stresses ranging between 0.1 and 6.4 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.13 and 0.63 Pa throughout all depths tested, with an interval average critical shear stress of 0.51 Pa (Figure B-6(2)). Average median grain size and wet bulk density were 15.17 μ m and 1.13 g/cm³, respectively (Figure B-6(2)). Median particle size

remained in the silt range throughout the core (Figure B-6(3)). Bulk density increased gradually at depth, and the particle size distribution decreased slightly (Figure B-6(4)).

Sediment generally eroded in small to medium (1/8-1/4 cm) clumps. Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-6(5)).

Core SF07

Core SF07 was collected on February 21, 2022, as described in Table 2-2, and resulted in the recovery of 31 cm of sediment. The core contains light orange-brown to gray-brown clayey silt with trace organic debris and worm burrows. The surface of the core contains traces of small worm casings and debris. A photograph of Core SF07 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-7(1).

Shear stresses ranging between 0.1 and 6.4 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.34 and 0.80 Pa throughout all depths tested, with an interval average critical shear stress of 0.48 Pa (Figure B-7(2)). Average median grain size and wet bulk density were 13.29 μ m and 1.16 g/cm³, respectively (Figure B-7(2)). Median particle size remained in the silt range throughout the core (Figure B-7(3)). Bulk density increased in the first 4.3 cm of the core and then gradually decreased, while the particle size distribution remained relatively steady (Figure B-7(4)).

Sediment generally eroded in small to medium (1/8-1/4 cm) clumps with occasionally larger (1/2-3/4 cm) clumps at the highest applied shear stress (6.4 Pa). Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-7(5)).

Core SF08

Core SF08 was collected on February 21, 2022, as described in Table 2-2, and resulted in the recovery of 30 cm of sediment. The core contains light orange-brown to gray-brown clayey silt with worm burrows. The surface of the core contains traces of small worm casings and organic debris. A photograph of Core SF08 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-8(1).

Shear stresses ranging between 0.1 and 6.4 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.16 and 0.63 Pa throughout all depths tested, with an interval average critical shear stress of 0.54 Pa (Figure B-8(2)). Average median grain size and wet bulk density were 17.94 μ m and 1.17 g/cm³, respectively (Figure B-8(2)). Median particle size remained in the silt range throughout the core (Figure B-8(3)). Bulk density increased gradually with depth, and the particle size distribution remained steady (Figure B-8(4)).

Sediment generally eroded in small to medium (1/8-1/4 cm) clumps. Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-8(5)).

Core SF09

Core SF09 was collected on February 22, 2022, as described in Table 2-2, and resulted in the recovery of 31 cm of sediment. The core contains light orange-brown to gray-brown clayey silt with occasional worm burrows. The surface of the core contains traces of small worm casings and

organic debris. A photograph of Core SF09 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-9(1).

Shear stresses ranging between 0.1 and 6.4 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.20 and 1.16 Pa throughout all depths tested, with an interval average critical shear stress of 0.66 Pa (Figure B-9(2)). Average median grain size and wet bulk density were 14.56 μ m and 1.11 g/cm³, respectively (Figure B-9(2)). Median particle size remained in the silt range throughout the core (Figure B-9(3)). Bulk density increased at depth, while the particle size distribution remained relatively steady (Figure B-9(4)).

Sediment generally eroded in plumes and small (1/8 cm) clumps throughout the first test interval, and small to medium (1/8-1/4 cm) clumps through the remaining test intervals. Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-9(5)).

Core SF10

Core SF10 was collected on February 22, 2022, as described in Table 2-2, and resulted in the recovery of 32 cm of sediment. The core contains light orange-brown to gray-brown clayey silt with some worm burrows and organic debris. The surface of the core contains traces of small worm casings. A photograph of Core SF10 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-10(1).

Shear stresses ranging between 0.1 and 12.8 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.2 and 1.14 Pa throughout all depths tested, with an interval average critical shear stress of 0.64 Pa (Figure B-10(2)). The average median grain size and wet bulk density were 16.03 μ m and 1.12 g/cm³, respectively (Figure B-10(2)). Median particle size remained in the silt range throughout the core (Figure B-10(3)). Bulk density increased in the first 6.3 cm of the core and then gradually decreased, while the particle size distribution remained relatively steady (Figure B-10(4)).

Sediment generally eroded in small to medium (1/8-1/4 cm) clumps with occasional plumes. Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-10(5)).

Core SF11

Core SF11 was collected on February 22, 2022, as described in Table 2-2, and resulted in the recovery of 31 cm of sediment. The core contains light orange-brown to gray-brown clayey silt with some organic debris and worm burrows. The surface of the core contains traces of small worm casings and organic debris. A photograph of Core SF11 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-11(1).

Shear stresses ranging between 0.1 and 12.8 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.19 and 1.27 Pa throughout all depths tested, with an interval average critical shear stress of 0.66 Pa (Figure B-11(2)). Average median grain size and wet bulk density were 15.13 μ m and 1.15 g/cm³, respectively (Figure B-11(2)). Median

particle size remained in the silt range throughout the core (Figure B-11(3)). Bulk density increased at depth, while the particle size distribution remained relatively steady (Figure B-11(4)).

Sediment generally eroded in small (1/8 cm) clumps with occasionally medium to large (1/4-1/2 cm) clumps at the higher applied shear stresses. Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-11(5)).

Core SF12

Core SF12 was collected on February 22, 2022, as described in Table 2-2, and resulted in the recovery of 35 cm of sediment. The core contains light orange-brown to gray-brown clayey silt with some organic debris and worm burrows. The surface of the core contains traces of small worm casings and organic debris. A photograph of Core SF12 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-12(1).

Shear stresses ranging between 0.1 and 12.8 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.2 and 1.42 Pa throughout all depths tested, with an interval average critical shear stress of 0.86 Pa (Figure B-12(2)). Average median grain size and wet bulk density were 12.69 μ m and 1.18 g/cm³, respectively (Figure B-12(2)). Median particle size remained in the silt range throughout the core (Figure B-12(3)). Bulk density increased at depth, while the particle size distribution decreased beyond 5 cm depth (Figure B-12(4)).

Sediment generally eroded in small to medium (1/8-1/4 cm) clumps with occasional larger (1/2-3/4 cm) clumps and plumes at the higher applied shear stresses. Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-12(5)).

Core SF13

Core SF13 was collected on February 22, 2022, as described in Table 2-2, and resulted in the recovery of 31 cm of sediment. The core contains light orange-brown to gray-brown clayey silt with trace organic debris and some worm burrows. A photograph of Core SF13 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-13(1).

Shear stresses ranging between 0.1 and 6.4 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.16 and 0.8 Pa throughout all depths tested, with an interval average critical shear stress of 0.56 Pa (Figure B-13(2)). Average median grain size and wet bulk density were 16.07 μ m and 1.17 g/cm³, respectively (Figure B-13(2)). Median particle size remained in the silt range throughout the core (Figure B-13(3)). Bulk density generally increased at depth, while the particle size distribution remained steady until 10.7 cm depth and then decreased (Figure B-13(4)).

Sediment generally eroded in small to medium (1/8-1/4 cm) clumps. Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-13(5)).

Core SF14

Core SF14 was collected on February 22, 2022, as described in Table 2-2, and resulted in the recovery of 35 cm of sediment. The core contains light orange-brown to gray-brown clayey silt with trace organic debris and occasional worm burrows. A photograph of Core SF14 aligned

vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-14(1).

Shear stresses ranging between 0.1 and 12.8 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.32 and 1.19 Pa throughout all depths tested, with an interval average critical shear stress of 0.81 Pa (Figure B-14(2)). Average median grain size and wet bulk density were 16.17 μ m and 1.16 g/cm³, respectively (Figure B-14(2)). Median particle size remained in the silt range throughout the core (Figure B-14(3)). Bulk density generally increased at depth, while the particle size distribution remained relatively steady (Figure B-14(4)).

Sediment generally eroded in small to medium (1/8-1/4 cm) clumps. Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-14(5)).

Core SF15

Core SF15 was collected on February 22, 2022, as described in Table 2-2, and resulted in the recovery of 33 cm of sediment. The core contains light orange-brown to gray-brown clayey silt with common worm burrows. The surface of the core contains traces of small worm casings and organic debris. A photograph of Core SF15 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-15(1).

Shear stresses ranging between 0.1 and 12.8 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.16 and 1.37 Pa throughout all depths tested, with an interval average critical shear stress of 0.67 Pa (Figure B-15(2)). Average median grain size and wet bulk density were 18.78 μ m and 1.17 g/cm³, respectively (Figure B-15(2)). Median particle size remained in the silt range throughout the core (Figure B-15(3)). Bulk density and particle size distribution increased in the first 2 cm of the core and then remained steady (Figure B-15(4)).

Sediment generally eroded in small to medium (1/8-1/4 cm) clumps with occasionally larger (1/2-3/4 cm) clumps at the higher applied shear stresses. Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-15(5)).

Core SF16

Core SF16 was collected on February 23, 2022, as described in Table 2-2, and resulted in the recovery of 35 cm of sediment. The core contains light orange-brown to gray-brown clayey silt with common worm burrows and some organic debris. A photograph of Core SF16 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-16(1).

Shear stresses ranging between 0.1 and 12.8 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.17 and 1.37 Pa throughout all depths tested, with an interval average critical shear stress of 0.86 Pa (Figure B-16(2)). Average median grain size and wet bulk density were 19.32 μ m and 1.17 g/cm³, respectively (Figure B-16(2)). Median particle size remained in the silt range throughout the core (Figure B-16(3)). Bulk density increased at depth, while the particle size distribution remained generally steady (Figure B-16(4)).

Sediment generally eroded in small to medium (1/8-1/4 cm) clumps. Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-16(5)).

Core SF17

Core SF17 was collected on February 22, 2022, as described in Table 2-2, and resulted in the recovery of 33 cm of sediment. The core contains light orange-brown to gray-brown clayey silt with trace worm burrows and organic debris. A photograph of Core SF17 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-17(1).

Shear stresses ranging between 0.1 and 12.8 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.2 and 1.31 Pa throughout all depths tested, with an interval average critical shear stress of 0.73 Pa (Figure B-17(2)). Average median grain size and wet bulk density were 19.13 μ m and 1.22 g/cm³, respectively (Figure B-17(2)). Median particle size remained in the silt range throughout the core (Figure B-17(3)). Bulk density increased until 6 cm depth and then decreased slightly, while the particle size distribution remained generally steady (Figure B-17(4)).

Sediment generally eroded in small to medium (1/8-1/4 cm) clumps. Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-17(5)).

Core SF18

Core SF18 was collected on February 22, 2022, as described in Table 2-2, and resulted in the recovery of 34 cm of sediment. The core contains light orange-brown to gray-brown clayey silt with common worm burrows and trace organic debris. A photograph of Core SF18 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-18(1).

Shear stresses ranging between 0.1 and 12.8 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.18 and 1.28 Pa throughout all depths tested, with an interval average critical shear stress of 0.89 Pa (Figure B-18(2)). Average median grain size and wet bulk density were 19.27 μ m and 1.17 g/cm³, respectively (Figure B-18(2)). Median particle size remained in the silt range throughout the core (Figure B-18(3)). Bulk density increased with depth, while the particle size distribution remained generally steady (Figure B-18(4)).

Sediment generally eroded in small to medium (1/8-1/4 cm) clumps with occasional larger (1/2 cm) clumps at the higher shear stresses. Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-18(5)).

Core SF19

Core SF19 was collected on February 22, 2022, as described in Table 2-2, and resulted in the recovery of 29 cm of sediment. The core contains light orange-brown to gray-brown clayey silt with occasional worm burrows and trace organic debris. A photograph of Core SF19 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-19(1).

Shear stresses ranging between 0.1 and 12.8 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.2 and 1.24 Pa throughout all depths tested, with an interval average critical shear stress of 0.65 Pa (Figure B-19(2)). Average median grain size and wet bulk density were 24.61 μ m and 1.20 g/cm³, respectively (Figure B-19(2)). Median particle size remained in the silt range throughout the core (Figure B-19(3)). Bulk density generally increased with depth, while the particle size distribution remained relatively steady (Figure B-19(4)).

Sediment generally eroded in small to medium (1/8-1/4 cm) clumps. Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-19(5)).

Core SF20

Core SF20 was collected on February 23, 2022, as described in Table 2-2, and resulted in the recovery of 31 cm of sediment. The core contains light orange-brown to gray-brown clayey silt with common worm burrows and organic debris. A photograph of Core SF20 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-20(1).

Shear stresses ranging between 0.1 and 12.8 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.21 and 2.51 Pa throughout all depths tested, with an interval average critical shear stress of 1.16 Pa (Figure B-20(2)). Average median grain size and wet bulk density were 21.15 μ m and 1.25 g/cm³, respectively (Figure B-20(2)). Median particle size remained in the silt range throughout the core (Figure B-20(3)). Bulk density generally increased with depth, while the particle size distribution increased in the first 2 cm and then gradually decreased (Figure B-20(4)).

Sediment generally eroded in a plume in the first interval and small to medium (1/8-1/4 cm) clumps in the remaining intervals. A large stick (15 cm by 2.5 cm) was recovered at a depth of 4.3 cm and may have affected erosion in the third interval. Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-20(5)).

Core SF21

Core SF21 was collected on February 23, 2022, as described in Table 2-2, and resulted in the recovery of 35 cm of sediment. The core contains light orange-brown to gray-brown clayey silt with some worm burrows and trace organic debris. A photograph of Core SF21 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-21(1).

Shear stresses ranging between 0.1 and 12.8 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.33 and 3.09 Pa throughout all depths tested, with an interval average critical shear stress of 1.50 Pa (Figure B-21(2)). Average median grain size and wet bulk density were 23.24 μ m and 1.19 g/cm³, respectively (Figure B-21(2)). Median particle size remained in the silt range throughout the core (Figure B-21(3)). Bulk density increased gradually with depth, and the particle size distribution increased until 7 cm and then gradually decreased (Figure B-21(4)).

Sediment generally eroded in a plume in the first interval and small to medium (1/8-1/4 cm) clumps in the remaining intervals. Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-21(5)).

Core SF22

Core SF22 was collected on February 23, 2022, as described in Table 2-2, and resulted in the recovery of 29 cm of sediment. The core contains light gray-brown clayey silt with sand and small gravels. A sandy layer with gravel is present at a depth of 4.2 to 12.5 cm. Some small worm burrows and bivalves are present throughout. A photograph of Core SF22 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-22(1).

Shear stresses ranging between 0.1 and 12.8 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.27 and 0.80 Pa throughout all depths tested, with an interval average critical shear stress of 0.49 Pa (Figure B-22(2)). Average median grain size and wet bulk density were 22.39 μ m and 1.35 g/cm³, respectively (Figure B-22(2)). Median particle size remained in the silt range throughout the core (Figure B-22(3)). Bulk density generally increased with depth, while the particle size distribution remained relatively constant (Figure B-22(4)).

Sediment eroded in a plume and very small clumps in the first interval, and small to medium (1/8-1/4 cm) clumps in the remaining intervals. Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-22(5)).

Core SF23

Core SF23 was collected on February 22, 2022, as described in Table 2-2, and resulted in the recovery of 30 cm of sediment. The core contains light gray-brown silt. No evidence of epifauna was present in the core. Changes in color, moving from lighter brown to grey, occurred 8 to 12 cm from the surface. A photograph of Core SF23 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-23(1).

Shear stresses ranging between 0.1 and 12.8 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.40 and 1.29 Pa throughout all depths tested, with an interval average critical shear stress of 0.82 Pa at the surface and generally increased to 1.29 Pa at the last interval (Figure B-23(2)). Average median grain size and wet bulk density were 27.73 μ m and 1.20 g/cm³, respectively (Figure B-23(2)). Median particle size remained in the silt range throughout the core (Figure B-23(3)). Bulk density generally increased with depth, while the particle size distribution remained relatively constant (Figure B-23(4)).

Sediment eroded in a plume and very small clumps in the first interval and small to medium (1/8-1/4 cm) clumps in the remaining intervals. Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-23(5)).

Core SF24

Core SF24 was collected on February 23, 2022, as described in Table 2-2, and resulted in the recovery of 30 cm of sediment. The core contains light orange-brown to gray-brown clayey silt

with occasional worm burrows. A photograph of Core SF24 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-24(1).

Shear stresses ranging between 0.1 and 12.8 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.28 and 1.34 Pa throughout all depths tested, with an interval average critical shear stress of 0.85 Pa (Figure B-24(2)). Average median grain size and wet bulk density were 26.57 μ m and 1.18 g/cm³, respectively (Figure B-24(2)). Median particle size remained in the silt range throughout the core (Figure B-24(3)). Bulk density and particle size distribution increased gradually with depth (Figure B-24(4)).

Sediment generally eroded in a plume in the first interval and small to medium (1/8-1/4 cm) clumps in the remaining intervals. Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-24(5)).

Core SF25

Core SF25 was collected on February 23, 2022, as described in Table 2-2, and resulted in the recovery of 30 cm of sediment. The core contains light orange-brown to gray-brown clayey silt with some worm burrows and trace organic debris. A photograph of Core SF25 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-25(1).

Shear stresses ranging between 0.1 and 12.8 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.30 and 1.35 Pa throughout all depths tested, with an interval average critical shear stress of 0.88 Pa (Figure B-25(2)). Average median grain size and wet bulk density were 26.98 μ m and 1.17 g/cm³, respectively (Figure B-25(2)). Median particle size remained in the silt range throughout the core (Figure B-25(3)). Bulk density increased gradually with depth, while the particle size distribution remained relatively steady (Figure B-25(4)).

Sediment generally eroded in a plume in the first interval and small to medium (1/8-1/4 cm) clumps in the remaining intervals. Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-25(5)).

Core SF26

Core SF26 was collected on February 23, 2022, as described in Table 2-2, and resulted in the recovery of 22 cm of sediment. The core contains light orange-brown to gray-brown clayey silt with some worm burrows and common organic debris. A photograph of Core SF26 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-26(1).

Shear stresses ranging between 0.1 and 6.4 Pa were applied to the core in four test intervals. Derived critical shear stresses were between 0.28 and 1.60 Pa throughout all depths tested, with an interval average critical shear stress of 0.83 Pa (Figure B-26(2)). Average median grain size and wet bulk density were 28.07 μ m and 1.31 g/cm³, respectively (Figure B-26(2)). Median particle size remained in the silt range throughout the core (Figure B-26(3)). Bulk density increased in the first 1 cm, then decreased until a depth of 4 cm, and then increased again until the final depth tested. The particle size distribution decreased slightly and gradually with depth (Figure B-26(4)).

Sediment generally eroded in a plume in the first interval and small to medium (1/8-1/4 cm) clumps in the remaining intervals. Power law fit parameters relating shear stress and erosion rate are provided for the four test intervals (Figure B-26(5)).

Core SF27

Core SF27 was collected on February 23, 2022, as described in Table 2-2, and resulted in the recovery of 22 cm of sediment. The core contains light orange-brown to gray-brown clayey silt with occasional sand and gravel. Some worm burrows and common organic debris are present throughout the core. A photograph of Core SF27 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-27(1).

Shear stresses ranging between 0.1 and 6.4 Pa were applied to the core in four test intervals. Derived critical shear stresses were between 0.25 and 1.33 Pa throughout all depths tested, with an interval average critical shear stress of 0.60 Pa (Figure B-27(2)). Average median grain size and wet bulk density were 30.75 μ m and 1.33 g/cm³, respectively (Figure B-27(2)). Median particle size remained in the silt range throughout the core (Figure B-27(3)). Bulk density increased in the first 1 cm, then decreased until a depth of 4 cm, and then increased again until the final depth tested. The particle size distribution decreased slightly and gradually with depth (Figure B-27(4)).

Sediment generally eroded in a plume in the first interval and small to medium (1/8-1/4 cm) clumps in the remaining intervals. Power law fit parameters relating shear stress and erosion rate are provided for the four test intervals (Figure B-27(5)).

Core SF28

Core SF28 was collected on February 23, 2022, as described in Table 2-2, and resulted in the recovery of 30 cm of sediment. The core contains light orange-brown to gray-brown clayey silt with some sand and very common organic debris (leaves, twigs, sticks). A photograph of Core SF28 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-28(1).

Shear stresses ranging between 0.1 and 3.2 Pa were applied to the core in four test intervals. Derived critical shear stresses were between 0.26 and 0.56 Pa throughout all depths tested, with an interval average critical shear stress of 0.41 Pa (Figure B-28(2)). Average median grain size and wet bulk density were 27.38 μ m and 1.17 g/cm³, respectively (Figure B-28(2)). Median particle size remained in the silt range throughout the core (Figure B-28(3)). Bulk density generally decreased with depth, and the particle size distribution remained relatively constant (Figure B-28(4)).

Sediment generally eroded in small to medium (1/8-1/4 cm) clumps with occasionally large to very large (1/2-2 cm) clumps where organic debris undermined sediment resulting in weak layers. Power law fit parameters relating shear stress and erosion rate are provided for the four test intervals (Figure B-28(5)).

Core SF29

Core SF29 was collected on February 23, 2022, as described in Table 2-2, and resulted in the recovery of 30.5 cm of sediment. The core contains light orange-brown to gray-brown clayey silt

with trace sand, and occasional worm burrows and common organic debris are present throughout. A photograph of Core SF29 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-29(1).

Shear stresses ranging between 0.1 and 6.4 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.20 and 0.99 Pa throughout all depths tested, with an interval average critical shear stress of 0.66 Pa (Figure B-29(2)). Average median grain size and wet bulk density were 28.27 μ m and 1.19 g/cm³, respectively (Figure B-29(2)). Median particle size remained in the silt range throughout the core (Figure B-29(3)). Bulk density and particle size distribution increased gradually with depth (Figure B-29(4)).

Sediment generally eroded in a plume in the first interval and small to medium (1/8-1/4 cm) clumps in the remaining intervals. Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-29(5)).

Core SF30

Core SF30 was collected on February 23, 2022, as described in Table 2-2, and resulted in the recovery of 30 cm of sediment. The core contains light orange-brown to gray-brown clayey silt with occasional worm burrows and trace organic debris. A photograph of Core SF30 aligned vertically with the applied shear stress and corresponding erosion rate data is presented in Figure B-30(1).

Shear stresses ranging between 0.1 and 6.4 Pa were applied to the core in five test intervals. Derived critical shear stresses were between 0.2 and 1.60 Pa throughout all depths tested, with an interval average critical shear stress of 0.90 Pa (Figure B-30(2)). Average median grain size and wet bulk density were 29.55 μ m and 1.17 g/cm³, respectively (Figure B-30(2)). Median particle size remained in the silt range throughout the core (Figure B-30(3)). Bulk density generally increased with depth, and the particle size distribution increased until 7 cm and then remained steady (Figure B-30(4)).

Sediment generally eroded in a plume and small to medium (1/8-1/4 cm) clumps. Power law fit parameters relating shear stress and erosion rate are provided for the five test intervals (Figure B-30(5)).

3.2 SEDFLUME ANALYSIS CONCLUSIONS

Characterization of sediment erodibility properties produced a data set that includes erosion rates, critical shear stresses for erosion, and physical measurements of native sediment throughout the system. Samples can be compared on a sitewide basis by comparing the erodibility of each core or interval to the sitewide average. The erosion rate ratio for each core is relative to the average over all cores. By comparing this way, Integral identified general trends or cores with similar erodibility traits. Figure 3-1 shows a summary of mass erosion rate ratios comparing between cores, as well as comparing between intervals within cores. Within this data set, Core SF03, located toward the upper portion of the site away from the mouth of SIB, was most erodible, while samples SF21 and SF23, located near the ship berths at the end of Swan Island, were the least erodible samples tested. This can be further extended to look at each interval tested. When comparing the intervals, which can vary in size but are generally 3 to 5 cm thick, Integral found that the surface was generally

most erodible across the site and the last interval was the least erodible; however, there is variability across the site. The noted variation in erodibility could be due to physical attributes, such as grain size and bulk density, or the presence or absence of benthic epifauna that was noted in some samples. Overall, the site includes a range of sediment erodibility properties and physical characteristics that can be considered when developing remedial strategies.

4.0 **REFERENCES**

- ASTM International, 2007. *Annual book of ASTM standards*. Vol. 04.08, Soil and Rock (I): D420–D5611. ASTM International, West Conshohocken, PA. pp. 314–315.
- Håkanson, L. and M. Jansson, 1983. "Principles of Lake Sedimentology." 320 pp. Berlin–New York: Springer-Verlag. ISBN 3–540 (Berlin) 0–387 (New York)–12645–7. DM 98, Int. Revue ges. Hydrobiol.
- HydroGeoLogic, Inc. (HGL), 2022a. *Pre-Design Investigation Work Plan, Revision 3*, CERCLA Docket No. 10-2021-001. Prepared for the Swan Island Remedial Design Group, Overland Park, Kansas. May.
- HGL, 2022b. Uniform Federal Policy-Quality Assurance Project Plan, Revision 3, CERCLA Docket No. 10-2021-001. Appendix B of the Pre-Design Investigation Work Plan, Revision 3. Prepared for the Swan Island Remedial Design Group, Overland Park, Kansas. May.
- HGL, 2022c. *Waste Management Plan, Revision 3, CERCLA Docket No. 10-2021-001.* Appendix C of the Field Sampling Plan. Prepared for the Swan Island Remedial Design Group, Overland Park, Kansas. May.
- Jepsen, R., Roberts, J., and Lick, W., 1997. "Effects of Bulk Density on Sediment Erosion Rates." *Water, Air, and Soil Pollution.* 99: 21–31.
- McNeil, J., Taylor, C., and Lick, W., 1996. "Measurements of Erosion of Undisturbed Bottom Sediments with Depth." *Journal of Hydraulic Engineering*. 122(6): 316–324.
- Roberts, J., Jepsen, R., Gotthard, D., and Lick, W., 1998. "Effects of Particle Size and Bulk Density on Erosion of Quartz Particles." *Journal of Hydraulic Engineering*. 124(12): 1261–1267.

Sea Engineering, Inc., 2006. SEDflume Analysis, Willamette River, Portland, OR.

- U.S. Environmental Protection Agency (EPA), 2017. Record of Decision, Portland Harbor Superfund Site, Portland, Oregon.
- EPA, 2021. Administrative Settlement Agreement and Order on Consent for Remedial Design, Swan Island Basin Project Area, CERCLA Docket No. 10-2021-001-7, Region 10. January 20.

This page was intentionally left blank.

TABLES

This page was intentionally left blank.

Proposed Locations (NAD83) ^a					
Location	Easting Northing		Mudline Depth	Mudline Depth	
Identification	(ft)	(ft)	(ft, NAVD88) ^b	(below CRD ft) ^c	
SF1	7,636,366	698,959	13.2	18.5	
SF2	7,636,523	699,150	12.5	17.8	
SF3	7,635,972	699,327	17.3	22.6	
SF4	7,636,062	699,444	17.5	22.0	
SF5 7,635,476 699,687 19.7		25.0			
SF6 7,635,564 699,932 20.0		25.3			
SF7	7,634,947	700,120	25.8	31.1	
SF8	SF8 7,635,167 700,274 21.0		26.2		
SF9	7,634,431	700,542	26.9	32.2	
SF10	7,634,588	700,733	17.4	22.7	
SF11	7,634,044	700,858	28.2	33.5	
SF12	7,634,201	701,050	19.4	24.7	
SF13	7,633,624	701,202	27.9	33.2	
SF14	7,633,781	701,393	21.4	26.6	
SF15	7,633,142	701,503	29.8	35.0	
SF16	7,633,251	701,826	18.9	24.1	
SF17	7,632,784	701,457	30.5	35.8	
SF18	7,632,713	2,713 701,785 18.3 23.6		23.6	
SF19	7,632,519	701,335	29.6	34.9	
SF20	7,632,390	701,634	20.6	25.9	
SF21 7,632,075 701,242 31.1		36.4			
SF22	7,632,034	701,561	12.4	17.6	
SF23	7,631,843	700,943	29.9	35.2	
SF24	7,631,464	701,251	31.2	36.5	
SF25	7,631,502	701,659	13.7	19.0	
SF26	7,631,682	700,022	41.9	47.2	
SF27	7,631,203	700,427	41.1	46.4	
SF28	7,630,888	700,884	51.1	56.4	
SF29	7,630,866	701,486	35.3	40.6	
SF30	7,631,017	701,866	9.6	14.9	

Table 2-1SEDflume Sample Locations

Footnotes:

a) Horizontal Projection: NAD83 Oregon State Plane North (international ft)

b) Elevations from 2018 NOAA multi-beam bathymetry and 2014 Otago Regional Council LiDAR

c) USACE conversion from CRD to NAVD88 for RM 7.5 to 11.7 at Broadway Bridge: CRD is 5.28 ft above NAVD88 at RM 9.7.

Acronyms:

ft = feet CRD = Columbia River datum LiDAR = light detection and ranging NAD83 = North American Datum of 1983 NAVD88 = North American Vertical Datum of 1988 USAG

NOAA = National Oceanic and Atmospheric Administration OLC = Oregon LiDAR Consortium RM = river mile USACE = U.S. Army Corps of Engineers

Locations	Collection Date	Collection Time	Recovery (cm)	Best Attempt	
SF01	2/21/2022	12:01	30	Fifth attempt	
SF02	2/21/2022	10:20	34	Third attempt	
SF03	2/21/2022	12:51	32	Second attempt	
SF04	2/21/2022	13:32	28.5	Second attempt, best attempt of four	
SF05	2/21/2022	14:38	30	First attempt	
SF06	2/21/2022	15:12	35	First attempt	
SF07	2/21/2022	15:39	31	First attempt	
SF08	2/21/2022	17:09	30	Seventh attempt	
SF09	2/22/2022	9:14	31	Third attempt	
SF10	2/22/2022	9:50	32	Second attempt	
SF11	2/22/2022	10:09	31	First attempt	
SF12	2/22/2022	10:59	35	Fourth attempt	
SF13	2/22/2022	11:46	31	First attempt	
SF14	2/22/2022	12:05	35	First attempt	
SF15	2/22/2022	12:22	33	First attempt	
SF16	2/23/2022	8:10	35	First attempt	
SF17	2/22/2022	12:42	33	First attempt	
SF18	2/22/2022	13:00	34	First attempt	
SF19	2/22/2022	14:01	29	Sixth attempt	
SF20	2/23/2022	8:25	31	First attempt	
SF21	2/23/2022	8:51	35	Second attempt	
SF22	2/23/2022	10:08	29	Third attempt	
SF23	2/22/2022	14:35	30	First attempt	
SF24	2/23/2022	10:39	30	First attempt	
SF25	2/23/2022	10:59	30	Second attempt	
SF26	2/23/2022	15:19	22	Seventh attempt	
SF27	2/23/2022	14:46	22	Fifth attempt	
SF28	2/23/2022	13:48	30	Third attempt	
SF29	2/23/2022	12:49	30.5	Second attempt	
SF30	2/23/2022	12:25	30	Second attempt	

Table 2-2SEDFlume Sample Information

Acronyms:

cm = centimeter

Measurement	Definition	Units	Detection Limit	Internal Consistency
Water Content	$W = \frac{M_w - M_d}{M_w}$	Dimensionless	0.001 g in sample weight ranging from 1 to 50 g	0< W < 1
Moisture Content	$MC = \frac{M_w - M_d}{M_d}$	Dimensionless	0.001 g in sample weight ranging from 1 to 50 g	NA
Wet Bulk Density	$\rho_{wet} = \frac{(100 * \rho_s)}{100 + (100 * W + IG)(\rho_s - 1)}$	g/cm ³	0.001 g in sample weight ranging from 1 to 50 g	$\rho_w < \rho_{wet} < 2.6$ ρ_w
Dry Bulk Density	$\rho_{dry} = \frac{\rho_{wet}}{1 + MC}$	g/cm ³	0.001 g in sample weight ranging from 1 to 50 g	$\rho_w < \rho_{dry} < \rho_{wet}$
Particle Size Distribution Below 2,000 µm	Distribution of particle sizes by volume percentage using laser diffraction	μm	Method specific	1 μm < grain size < 2,000 μm

 Table 2-3

 Parameters Measured and Computed During the SEDflume Analysis

Notes:

 $M_d = dry$ weight of sample

 M_w = wet weight of sample

 ρ_w = density of water (assumed 1 g/cm³)

 ρ_s = density of sediment particle (assumed 2.65 g/cm³)

Acronyms:

% = percent μ m = micrometer g = gram g/cm^3 = grams per cubic centimeter IG = percent loss on ignition based on wet weight MC = moisture content NA = not applicable ρ_{dry} = dry bulk density ρ_{wet} = wet bulk density W = water content **FIGURES**

This page was intentionally left blank.

Sediment Core Collection Apparatus

Retrieval of Sediment Core Sample

Prepared on 6/13/2022
SEDflume Sampling
Summary
Swan Island Basin

Figure 2-1 Sediment Core Sampling

APPENDIX A

PARTICLE SIZE DISTRIBUTIONS

This page was intentionally left blank.

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-1-1001.\$av Sf-1-1 001.\$av
File ID:	SF-1-1
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	metric)	Sf-1-1001	\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		14.60 µm	S.D.:	3.192
Median:		15.26 µm	Variance:	10.19
Mean/Media	n ratio:	0.957	Skewness:	-0.082 Left skewed
Mode:		18.00 µm	Kurtosis:	0.561 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.352 µm	7.485 µr	m 15.26 µm	28.93 µm	58.62 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-1-2001.\$av Sf-1-2001.\$av
File ID:	SF-1-2
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-1-2001	\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		14.38 µm	S.D.:	2.978
Median:		15.09 µm	Variance:	8.867
Mean/Media	n ratio:	0.953	Skewness:	-0.247 Left skewed
Mode:		16.40 µm	Kurtosis:	0.449 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.629 µm	7.729 µr	m 15.09 µm	27.93 µm	54.40 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-1-3001.\$av Sf-1-3001.\$av
File ID:	SF-1-3
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-1-3001	\$av
Calculations	from 0.37	′5 μm to 2000 μm		
Volume:		100%		
Mean:		15.56 µm	S.D.:	3.148
Median:		16.03 µm	Variance:	9.909
Mean/Media	n ratio:	0.971	Skewness:	-0.111 Left skewed
Mode:		18.00 µm	Kurtosis:	0.369 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.659 µm	7.967 µ	m 16.03 µm	30.86 µm	64.03 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-1-4001.\$av Sf-1-4001.\$av
File ID:	SF-1-4
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-1-4001.	\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		13.92 µm	S.D.:	3.103
Median:		14.58 µm	Variance:	9.631
Mean/Media	n ratio:	0.955	Skewness:	-0.225 Left skewed
Mode:		18.00 µm	Kurtosis:	0.166 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.228 µm	7.105 µr	m 14.58 µm	28.44 µm	57.35 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-1-5001.\$av Sf-1-5001.\$av
File ID:	SF-1-5
Oplical model:	

Volume Stat	istics (Geo	metric)	Sf-1-5001	.\$av
Calculations	from 0.375	5 µm to 2000 µm		
Volume:		100%		
Mean:		14.31 µm	S.D.:	3.361
Median:		14.19 µm	Variance:	11.30
Mean/Media	n ratio:	1.009	Skewness:	0.106 Right skewed
Mode:		14.94 µm	Kurtosis:	0.511 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.219 µm	6.919 µn	n 14.19 µm	28.90 µm	65.45 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-2-1001.\$av Sf-2-1 001.\$av
File ID:	SF-2-1
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-2-1001	\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		13.10 µm	S.D.:	2.798
Median:		14.28 µm	Variance:	7.826
Mean/Media	in ratio:	0.917	Skewness:	-0.421 Left skewed
Mode:		16.40 µm	Kurtosis:	0.317 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.385 µm	7.184 µr	m 14.28 µm	25.67 µm	44.87 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-2-2001.\$av Sf-2-2001.\$av
File ID: Optical model:	SF-2-2 Fraunbofer rf780z
Optical model.	

Volume Stat	istics (Geo	ometric)	Sf-2-2_001	\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		14.80 µm	S.D.:	3.034
Median:		15.24 µm	Variance:	9.206
Mean/Media	in ratio:	0.971	Skewness:	-0.063 Left skewed
Mode:		16.40 µm	Kurtosis:	0.455 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.674 µm	7.638 µr	m 15.24 μm	28.60 µm	57.10 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-2-3001.\$av Sf-2-3001.\$av
File ID:	SF-2-3
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-2-3001	.\$av
Calculations	from 0.37	5 μm to 2000 μm		
Volume:		100%		
Mean:		14.93 µm	S.D.:	3.251
Median:		15.14 µm	Variance:	10.57
Mean/Media	n ratio:	0.986	Skewness:	-0.0042 Left skewed
Mode:		16.40 µm	Kurtosis:	0.410 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.398 µm	7.321 µı	m 15.14 μm	30.37 µm	65.42 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-2-4001.\$av
	Sf-2-4001.\$av
File ID:	SF-2-4
Optical model:	Fraunhofer.rf780z

Volume Stati	stics (Geo	metric)	Sf-2-4001.	\$av
Calculations	from 0.375	5 μm to 2000 μm		
Volume:		100%		
Mean:		15.91 µm	S.D.:	3.506
Median:		17.03 µm	Variance:	12.29
Mean/Media	n ratio:	0.934	Skewness:	-0.271 Left skewed
Mode:		19.76 µm	Kurtosis:	-0.213 Platykurtic
<10%	<25%	<50%	<75%	<90%
2.959 µm	7.044 µn	n 17.03 µm	39.09 µm	76.90 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-2-5001.\$av Sf-2-5001.\$av
File ID:	SF-2-5
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	metric)	Sf-2-5001	.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		20.14 µm	S.D.:	3.955
Median:		21.08 µm	Variance:	15.65
Mean/Media	n ratio:	0.956	Skewness:	0.0015 Right skewed
Mode:		26.15 µm	Kurtosis:	0.134 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.337 µm	8.614 µr	m 21.08 µm	45.15 µm	112.8 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-3-1001.\$av Sf-3-1 001.\$av
File ID:	SF-3-1
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-3-1001	.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		12.56 µm	S.D.:	2.965
Median:		13.56 µm	Variance:	8.792
Mean/Media	in ratio:	0.927	Skewness:	-0.260 Left skewed
Mode:		16.40 µm	Kurtosis:	0.461 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.050 µm	6.755 µr	m 13.56 µm	24.61 µm	44.73 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-3-2001.\$av Sf-3-2 001.\$av
File ID:	SF-3-2
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-3-2001	\$av
Calculations	from 0.37	5 μm to 2000 μm		
Volume:		100%		
Mean:		13.69 µm	S.D.:	2.745
Median:		15.01 µm	Variance:	7.536
Mean/Media	n ratio:	0.912	Skewness:	-0.507 Left skewed
Mode:		18.00 µm	Kurtosis:	0.677 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.769 µm	7.893 µr	m 15.01 µm	25.96 µm	43.58 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-3-3001.\$av Sf-3-3001.\$av
File ID:	SF-3-3
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-3-3001	.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		13.90 µm	S.D.:	3.257
Median:		14.11 µm	Variance:	10.61
Mean/Media	n ratio:	0.985	Skewness:	0.067 Right skewed
Mode:		16.40 µm	Kurtosis:	0.626 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.218 µm	7.009 µr	m 14.11 µm	26.88 µm	57.61 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-3-4002.\$av Sf-3-4 _002.\$av
File ID:	SF-3-4
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-3-4002.	\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		11.78 µm	S.D.:	3.056
Median:		12.50 µm	Variance:	9.341
Mean/Media	in ratio:	0.942	Skewness:	-0.135 Left skewed
Mode:		14.94 µm	Kurtosis:	0.432 Leptokurtic
<10%	<25%	<50%	<75%	<90%
2.747 µm	6.147 µr	m 12.50 µm	23.38 µm	43.33 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-3-5001.\$av Sf-3-5001.\$av
File ID:	SF-3-5
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	metric)	Sf-3-5_001	\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		12.15 µm	S.D.:	3.037
Median:		12.89 µm	Variance:	9.223
Mean/Media	in ratio:	0.943	Skewness:	-0.299 Left skewed
Mode:		14.94 µm	Kurtosis:	0.033 Leptokurtic
<10%	<25%	<50%	<75%	<90%
2.802 µm	6.228 µr	m 12.89 µm	25.11 µm	49.19 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-4-1001.\$av Sf-4-1 001.\$av
File ID:	SF-4-1
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-4-1001	.\$av
Calculations	from 0.37	5 μm to 2000 μm		
Volume:		100%		
Mean:		13.87 µm	S.D.:	3.116
Median:		14.27 µm	Variance:	9.711
Mean/Media	in ratio:	0.972	Skewness:	-0.107 Left skewed
Mode:		16.40 µm	Kurtosis:	0.405 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.341 µm	7.187 µ	m 14.27 μm	26.91 µm	56.12 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-4-2001.\$av Sf-4-2001.\$av
File ID:	SF-4-2
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-4-2001	.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		11.67 µm	S.D.:	2.924
Median:		12.42 µm	Variance:	8.548
Mean/Media	n ratio:	0.940	Skewness:	-0.301 Left skewed
Mode:		13.61 µm	Kurtosis:	0.175 Leptokurtic
<10%	<25%	<50%	<75%	<90%
2.870 µm	6.199 µr	m 12.42 μm	23.16 µm	43.92 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-4-3001.\$av Sf-4-3 001.\$av
File ID: Optical model:	SF-4-3 Fraunhofer rf780z
Optiour model.	

Volume Stati	istics (Geo	ometric)	Sf-4-3001	.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		11.47 µm	S.D.:	3.153
Median:		11.78 µm	Variance:	9.943
Mean/Media	n ratio:	0.973	Skewness:	-0.098 Left skewed
Mode:		12.40 µm	Kurtosis:	0.063 Leptokurtic
<10%	<25%	<50%	<75%	<90%
2.583 µm	5.676 µr	m 11.78 µm	23.47 µm	48.86 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-4-4001.\$av Sf-4-4 001.\$av
File ID:	SF-4-4
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-4-4001	.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		9.153 µm	S.D.:	3.094
Median:		9.382 µm	Variance:	9.575
Mean/Media	in ratio:	0.976	Skewness:	-0.110 Left skewed
Mode:		9.371 µm	Kurtosis:	-0.239 Platykurtic
<10%	<25%	<50%	<75%	<90%
2.030 µm	4.418 µr	m 9.382 µm	19.40 µm	40.29 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-4-5001.\$av Sf-4-5001.\$av
File ID:	SF-4-5
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-4-5001	.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		13.54 µm	S.D.:	3.220
Median:		14.82 µm	Variance:	10.37
Mean/Media	n ratio:	0.914	Skewness:	-0.364 Left skewed
Mode:		18.00 µm	Kurtosis:	-0.158 Platykurtic
<10%	<25%	<50%	<75%	<90%
2.761 µm	6.471 µr	m 14.82 µm	31.11 µm	57.65 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-5-1001.\$av Sf-5-1 001.\$av
File ID:	SF-5-1
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	metric)	Sf-5-1001	.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		15.06 µm	S.D.:	3.558
Median:		14.93 µm	Variance:	12.66
Mean/Media	n ratio:	1.008	Skewness:	0.088 Right skewed
Mode:		16.40 µm	Kurtosis:	0.296 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.063 µm	7.029 µr	m 14.93 µm	31.17 µm	80.25 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-5-2001.\$av Sf-5-2 001.\$av
File ID:	SF-5-2
Oplical model:	

Volume Stati	istics (Geo	metric)	Sf-5-2001	\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		19.39 µm	S.D.:	3.826
Median:		17.83 µm	Variance:	14.64
Mean/Media	n ratio:	1.087	Skewness:	0.278 Right skewed
Mode:		18.00 µm	Kurtosis:	0.532 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.005 µm	8.697 µr	n 17.83 µm	40.08 µm	113.2 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-5-3001.\$av Sf-5-3 _001.\$av
File ID:	SF-5-3
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	metric)	Sf-5-3001	\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		17.25 µm	S.D.:	3.286
Median:		17.14 µm	Variance:	10.80
Mean/Media	n ratio:	1.006	Skewness:	-0.0097 Left skewed
Mode:		18.00 µm	Kurtosis:	0.515 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.079 µm	8.634 µr	m 17.14 µm	33.98 µm	79.98 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-5-4001.\$av Sf-5-4 _001.\$av
File ID:	SF-5-4
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-5-4001.	\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		13.50 µm	S.D.:	3.074
Median:		14.17 µm	Variance:	9.450
Mean/Media	in ratio:	0.953	Skewness:	-0.314 Left skewed
Mode:		16.40 µm	Kurtosis:	-0.00090 Platykurtic
<10%	<25%	<50%	<75%	<90%
3.120 µm	6.844 µr	m 14.17 μm	28.29 µm	59.68 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-5-5001.\$av Sf-5-5001.\$av
File ID:	SF-5-5
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-5-5_001	\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		8.263 µm	S.D.:	2.825
Median:		9.006 µm	Variance:	7.981
Mean/Media	n ratio:	0.918	Skewness:	-0.358 Left skewed
Mode:		10.29 µm	Kurtosis:	-0.263 Platykurtic
<10%	<25%	<50%	<75%	<90%
1.944 µm	4.262 µr	m 9.006 µm	17.37 µm	30.38 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-6-1001.\$av Sf-6-1001.\$av
File ID:	SF-6-1
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-6-1001	\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		12.84 µm	S.D.:	3.154
Median:		13.35 µm	Variance:	9.949
Mean/Media	n ratio:	0.962	Skewness:	-0.130 Left skewed
Mode:		16.40 µm	Kurtosis:	0.223 Leptokurtic
<10%	<25%	<50%	<75%	<90%
2.921 µm	6.519 µr	m 13.35 µm	25.66 µm	53.26 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-6-2001.\$av Sf-6-2 001.\$av
File ID:	SF-6-2
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-6-2001	\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		15.10 µm	S.D.:	2.878
Median:		16.14 µm	Variance:	8.284
Mean/Media	n ratio:	0.936	Skewness:	-0.497 Left skewed
Mode:		18.00 µm	Kurtosis:	0.340 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.902 µm	8.264 µr	m 16.14 µm	30.47 µm	58.44 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-6-3001.\$av Sf-6-3 001.\$av
File ID:	SF-6-3
Optical model:	Fraunhofer.rf780z

Volume Stati	stics (Geo	ometric)	Sf-6-3001	\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		15.36 µm	S.D.:	2.845
Median:		16.44 µm	Variance:	8.095
Mean/Media	n ratio:	0.934	Skewness:	-0.528 Left skewed
Mode:		18.00 µm	Kurtosis:	0.348 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.019 µm	8.401 µr	m 16.44 µm	31.21 µm	59.20 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-6-4001.\$av Sf-6-4 001.\$av
File ID:	SF-6-4
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-6-4001.	\$av
Calculations	from 0.37	5 μm to 2000 μm		
Volume:		100%		
Mean:		14.91 µm	S.D.:	3.136
Median:		15.50 µm	Variance:	9.834
Mean/Media	an ratio:	0.962	Skewness:	-0.312 Left skewed
Mode:		16.40 µm	Kurtosis:	-0.0040 Platykurtic
<10%	<25%	<50%	<75%	<90%
3.408 µm	7.428 µr	m 15.50 μm	32.36 µm	67.15 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-6-5001.\$av Sf-6-5001.\$av
File ID:	SF-6-5
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	metric)	Sf-6-5001	.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		14.86 µm	S.D.:	3.528
Median:		14.44 µm	Variance:	12.45
Mean/Media	n ratio:	1.029	Skewness:	0.110 Right skewed
Mode:		16.40 µm	Kurtosis:	0.226 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.110 µm	6.860 µr	m 14.44 µm	31.35 µm	77.98 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-7-1001.\$av Sf-7-1 001.\$av
File ID:	SF-7-1
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-7-1001	.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		13.65 µm	S.D.:	3.040
Median:		14.60 µm	Variance:	9.239
Mean/Media	n ratio:	0.935	Skewness:	-0.235 Left skewed
Mode:		16.40 µm	Kurtosis:	0.442 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.248 µm	7.243 µr	m 14.60 µm	26.83 µm	50.66 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-7-2001.\$av Sf-7-2001.\$av
File ID:	SF-7-2
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-7-2001	\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		12.73 µm	S.D.:	3.004
Median:		13.66 µm	Variance:	9.025
Mean/Media	in ratio:	0.932	Skewness:	-0.339 Left skewed
Mode:		16.40 µm	Kurtosis:	0.146 Leptokurtic
<10%	<25%	<50%	<75%	<90%
2.988 µm	6.675 µr	m 13.66 µm	25.84 µm	49.82 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-7-3001.\$av Sf-7-3001.\$av
File ID:	SF-7-3
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-7-3001	\$av
Calculations	from 0.37	5 μm to 2000 μm		
Volume:		100%		
Mean:		12.46 µm	S.D.:	3.209
Median:		12.95 µm	Variance:	10.29
Mean/Media	n ratio:	0.962	Skewness:	-0.141 Left skewed
Mode:		14.94 µm	Kurtosis:	0.029 Leptokurtic
<10%	<25%	<50%	<75%	<90%
2.715 µm	6.061 µı	m 12.95 µm	26.31 µm	53.62 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-7-4001.\$av Sf-7-4 _001.\$av
File ID:	SF-7-4
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-7-4001.	\$av
Calculations	from 0.37	5 μm to 2000 μm		
Volume:		100%		
Mean:		9.784 µm	S.D.:	2.914
Median:		10.56 µm	Variance:	8.493
Mean/Media	an ratio:	0.926	Skewness:	-0.358 Left skewed
Mode:		11.29 µm	Kurtosis:	-0.177 Platykurtic
<10%	<25%	<50%	<75%	<90%
2.254 µm	5.028 µ	m 10.56 µm	20.63 µm	38.11 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-7-5001.\$av Sf-7-5 001.\$av
File ID:	SF-7-5
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	metric)	Sf-7-5001	\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		13.91 µm	S.D.:	3.115
Median:		14.70 µm	Variance:	9.706
Mean/Media	n ratio:	0.947	Skewness:	-0.247 Left skewed
Mode:		16.40 µm	Kurtosis:	0.194 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.190 µm	7.099 µr	m 14.70 µm	28.64 µm	56.78 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-8-1001.\$av Sf-8-1 001.\$av
File ID:	SF-8-1
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-8-1001	.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		19.28 µm	S.D.:	3.610
Median:		18.96 µm	Variance:	13.03
Mean/Media	n ratio:	1.017	Skewness:	-0.076 Left skewed
Mode:		18.00 µm	Kurtosis:	0.173 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.899 µm	8.968 µr	m 18.96 µm	42.80 µm	102.9 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-8-2001.\$av Sf-8-2001.\$av
File ID:	SF-8-2
Optical model:	Fraunhofer.rf780z

Volume Stati	stics (Geo	metric)	Sf-8-2001.	\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		17.56 µm	S.D.:	3.159
Median:		17.92 µm	Variance:	9.978
Mean/Media	n ratio:	0.980	Skewness:	-0.277 Left skewed
Mode:		18.00 µm	Kurtosis:	0.291 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.197 μm	8.985 µr	m 17.92 µm	36.71 µm	78.16 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-8-3001.\$av Sf-8-3 001.\$av
File ID:	SF-8-3
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-8-3001	.\$av
Calculations	from 0.37	5 μm to 2000 μm		
Volume:		100%		
Mean:		17.15 µm	S.D.:	3.139
Median:		17.52 µm	Variance:	9.852
Mean/Media	n ratio:	0.979	Skewness:	-0.301 Left skewed
Mode:		18.00 µm	Kurtosis:	0.183 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.089 µm	8.687 µı	m 17.52 μm	36.43 µm	77.01 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-8-4001.\$av Sf-8-4001.\$av
File ID:	SF-8-4
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	metric)	Sf-8-4001	\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		18.67 µm	S.D.:	3.439
Median:		18.54 µm	Variance:	11.82
Mean/Media	n ratio:	1.007	Skewness:	-0.087 Left skewed
Mode:		18.00 µm	Kurtosis:	0.257 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.045 μm	8.853 µr	m 18.54 µm	40.81 µm	91.74 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-8-5001.\$av Sf-8-5001.\$av
File ID:	SF-8-5
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-8-5_001	\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		17.98 µm	S.D.:	3.949
Median:		16.78 µm	Variance:	15.60
Mean/Media	n ratio:	1.071	Skewness:	0.206 Right skewed
Mode:		16.40 µm	Kurtosis:	0.183 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.385 µm	7.665 µr	m 16.78 µm	39.64 µm	109.0 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-9-1001.\$av Sf-9-1 001.\$av
File ID:	SF-9-1
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	metric)	Sf-9-1001	\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		11.11 µm	S.D.:	2.793
Median:		12.48 µm	Variance:	7.798
Mean/Media	n ratio:	0.890	Skewness:	-0.515 Left skewed
Mode:		16.40 µm	Kurtosis:	0.228 Leptokurtic
<10%	<25%	<50%	<75%	<90%
2.732 µm	6.150 µr	m 12.48 µm	22.29 µm	37.06 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-9-2002.\$av Sf-9-2 002.\$av
File ID:	SF-9-2
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-9-2002	.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		12.12 µm	S.D.:	2.677
Median:		13.75 µm	Variance:	7.167
Mean/Media	n ratio:	0.881	Skewness:	-0.697 Left skewed
Mode:		16.40 µm	Kurtosis:	0.463 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.219 µm	7.030 µr	m 13.75 µm	23.97 µm	38.63 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-9-3001.\$av Sf-9-3001.\$av
File ID:	SF-9-3
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-9-3001	.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		15.43 µm	S.D.:	2.814
Median:		16.69 µm	Variance:	7.917
Mean/Media	in ratio:	0.924	Skewness:	-0.493 Left skewed
Mode:		18.00 µm	Kurtosis:	0.658 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.191 µm	8.709 µr	m 16.69 µm	29.82 µm	52.22 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-9-4001.\$av Sf-9-4 001.\$av
File ID:	SF-9-4
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-9-4001	.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		15.68 µm	S.D.:	3.080
Median:		16.24 µm	Variance:	9.484
Mean/Media	n ratio:	0.965	Skewness:	-0.119 Left skewed
Mode:		18.00 µm	Kurtosis:	0.678 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.906 µm	8.263 µr	m 16.24 µm	30.23 µm	60.97 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-9-5001.\$av Sf-9-5 001.\$av
File ID:	SF-9-5
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-9-5_001.	\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		12.39 µm	S.D.:	2.877
Median:		13.63 µm	Variance:	8.277
Mean/Media	n ratio:	0.909	Skewness:	-0.465 Left skewed
Mode:		18.00 µm	Kurtosis:	0.165 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.016 µm	6.660 µr	m 13.63 µm	25.34 µm	44.48 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-10-1001.\$av
	Sf-10-1001.\$av
File ID:	SF-10-1
Optical model:	Fraunhofer.rf780z

Volume Stati	stics (Geo	metric)	Sf-10-100 ⁻	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		14.66 µm	S.D.:	3.346
Median:		15.06 µm	Variance:	11.20
Mean/Media	n ratio:	0.973	Skewness:	0.045 Right skewed
Mode:		16.40 µm	Kurtosis:	0.629 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.210 µm	7.274 µr	n 15.06 µm	29.29 µm	62.72 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-10-2001.\$av Sf-10-2 001.\$av
File ID:	SF-10-2
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-10-200	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		15.53 µm	S.D.:	3.049
Median:		16.34 µm	Variance:	9.296
Mean/Media	in ratio:	0.950	Skewness:	-0.264 Left skewed
Mode:		18.00 µm	Kurtosis:	0.445 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.818 µm	8.217 µr	m 16.34 µm	30.69 µm	60.54 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-10-3001.\$av Sf-10-3 001.\$av
File ID:	SF-10-3
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-10-300	1.\$av
Calculations	from 0.37	75 μm to 2000 μm		
Volume:		100%		
Mean:		15.40 µm	S.D.:	3.125
Median:		16.01 µm	Variance:	9.764
Mean/Media	n ratio:	0.962	Skewness:	-0.221 Left skewed
Mode:		18.00 µm	Kurtosis:	0.301 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.636 µm	7.907 µ	m 16.01 µm	31.19 µm	65.04 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-10-4001.\$av Sf-10-4001.\$av
File ID:	SF-10-4
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	metric)	Sf-10-4007	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		17.59 µm	S.D.:	3.238
Median:		18.08 µm	Variance:	10.48
Mean/Media	n ratio:	0.973	Skewness:	-0.173 Left skewed
Mode:		19.76 µm	Kurtosis:	0.407 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.067 µm	8.901 µr	m 18.08 µm	35.80 µm	78.14 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-10-5001.\$av Sf-10-5001.\$av
File ID:	SF-10-5
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-10-5_00	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		14.81 µm	S.D.:	3.507
Median:		14.67 µm	Variance:	12.30
Mean/Media	in ratio:	1.010	Skewness:	0.145 Right skewed
Mode:		16.40 µm	Kurtosis:	0.441 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.136 µm	6.946 µr	m 14.67 µm	30.17 µm	72.40 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-11-1001.\$av Sf-11-1 001.\$av
File ID: Optical model:	SF-11-1 Fraunhofer rf780z
Optical model.	

Volume Stati	istics (Geo	ometric)	Sf-11-1007	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		12.64 µm	S.D.:	3.171
Median:		13.46 µm	Variance:	10.06
Mean/Media	in ratio:	0.939	Skewness:	-0.173 Left skewed
Mode:		16.40 µm	Kurtosis:	0.212 Leptokurtic
<10%	<25%	<50%	<75%	<90%
2.758 µm	6.348 µr	m 13.46 µm	26.14 µm	50.76 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-11-2001.\$av Sf-11-2 001.\$av
File ID:	SF-11-2
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-11-2007	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		14.81 µm	S.D.:	2.777
Median:		16.52 µm	Variance:	7.714
Mean/Media	in ratio:	0.897	Skewness:	-0.541 Left skewed
Mode:		19.76 µm	Kurtosis:	0.809 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.961 µm	8.518 µr	m 16.52 μm	28.89 µm	46.55 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-11-3001.\$av Sf-11-3 001.\$av
File ID:	SF-11-3
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-11-3007	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		14.63 µm	S.D.:	2.908
Median:		15.80 µm	Variance:	8.459
Mean/Media	n ratio:	0.926	Skewness:	-0.341 Left skewed
Mode:		18.00 µm	Kurtosis:	0.648 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.766 µm	8.068 µı	m 15.80 µm	28.41 µm	49.89 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-11-4001.\$av Sf-11-4 001.\$av
File ID:	SF-11-4
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-11-4007	1.\$av
Calculations	from 0.37	′5 μm to 2000 μm		
Volume:		100%		
Mean:		13.46 µm	S.D.:	2.937
Median:		14.65 µm	Variance:	8.626
Mean/Media	an ratio:	0.919	Skewness:	-0.358 Left skewed
Mode:		18.00 µm	Kurtosis:	0.390 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.292 µm	7.249 µ	m 14.65 µm	26.86 µm	47.35 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-11-5001.\$av Sf-11-5 001.\$av
File ID:	SF-11-5
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-11-5007	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		14.41 µm	S.D.:	3.262
Median:		15.22 µm	Variance:	10.64
Mean/Media	n ratio:	0.947	Skewness:	-0.087 Left skewed
Mode:		18.00 µm	Kurtosis:	0.473 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.137 µm	7.181 µr	m 15.22 μm	29.61 µm	57.82 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-12-1001.\$av Sf-12-1 001.\$av
File ID:	SF-12-1
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-12-100	1.\$av
Calculations	from 0.37	5 μm to 2000 μm		
Volume:		100%		
Mean:		13.55 µm	S.D.:	3.000
Median:		14.78 µm	Variance:	8.997
Mean/Media	n ratio:	0.917	Skewness:	-0.339 Left skewed
Mode:		18.00 µm	Kurtosis:	0.395 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.203 µm	7.242 µı	m 14.78 µm	27.24 µm	48.89 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-12-2001.\$av Sf-12-2001.\$av
File ID:	SF-12-2
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	metric)	Sf-12-200 ⁻	1.\$av
Calculations	from 0.375	5 μm to 2000 μm		
Volume:		100%		
Mean:		14.57 µm	S.D.:	3.308
Median:		14.79 µm	Variance:	10.95
Mean/Media	n ratio:	0.985	Skewness:	0.082 Right skewed
Mode:		16.40 µm	Kurtosis:	0.659 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.324 µm	7.260 µn	n 14.79 µm	28.79 µm	59.77 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-12-3002.\$av Sf-12-3 _002.\$av
File ID: Optical model:	SF-12-3 Fraunhofer rf780z
optiour model.	

Volume Stat	istics (Geo	ometric)	Sf-12-300	2.\$av
Calculations	from 0.37	5 μm to 2000 μm		
Volume:		100%		
Mean:		15.00 µm	S.D.:	3.019
Median:		16.04 µm	Variance:	9.112
Mean/Media	n ratio:	0.935	Skewness:	-0.321 Left skewed
Mode:		18.00 µm	Kurtosis:	0.440 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.644 µm	8.007 µı	m 16.04 µm	29.86 µm	56.66 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-12-4001.\$av Sf-12-4 001.\$av
File ID:	SF-12-4
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-12-400	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		8.174 µm	S.D.:	2.878
Median:		8.867 µm	Variance:	8.285
Mean/Media	n ratio:	0.922	Skewness:	-0.320 Left skewed
Mode:		10.29 µm	Kurtosis:	-0.285 Platykurtic
<10%	<25%	<50%	<75%	<90%
1.871 µm	4.149 µı	m 8.867 µm	17.39 µm	30.80 µm

File name:	C:\Users\smcwilliams74\Desktop\PSD Data\PSD Data\Sf-12-5002.\$av Sf-12-5 002.\$av
File ID:	SF-12-5
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-12-500	2.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		8.912 µm	S.D.:	3.474
Median:		8.978 µm	Variance:	12.07
Mean/Media	in ratio:	0.993	Skewness:	0.016 Right skewed
Mode:		8.537 µm	Kurtosis:	-0.445 Platykurtic
<10%	<25%	<50%	<75%	<90%
1.672 µm	3.730 µı	m 8.978 µm	21.09 µm	44.85 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-13-1002.\$av Sf-13-1002.\$av
File ID:	SF-13-1
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-13-100	2.\$av
Calculations	from 0.37	′5 μm to 2000 μm		
Volume:		100%		
Mean:		16.93 µm	S.D.:	3.119
Median:		17.84 µm	Variance:	9.729
Mean/Media	in ratio:	0.949	Skewness:	-0.222 Left skewed
Mode:		19.76 µm	Kurtosis:	0.543 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.050 µm	8.891 µ	m 17.84 µm	33.38 µm	66.98 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-13-2001.\$av Sf-13-2 _001.\$av
File ID:	SF-13-2
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-13-200	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		15.13 µm	S.D.:	2.775
Median:		16.83 µm	Variance:	7.700
Mean/Media	n ratio:	0.899	Skewness:	-0.639 Left skewed
Mode:		19.76 µm	Kurtosis:	0.548 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.996 µm	8.585 µr	m 16.83 µm	30.05 µm	51.16 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-13-3001.\$av Sf-13-3001.\$av
File ID:	SF-13-3
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-13-300	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		15.80 µm	S.D.:	3.009
Median:		17.17 µm	Variance:	9.056
Mean/Media	n ratio:	0.920	Skewness:	-0.440 Left skewed
Mode:		19.76 µm	Kurtosis:	0.234 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.724 µm	8.292 µr	m 17.17 μm	32.73 µm	62.02 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-13-4001.\$av Sf-13-4 _001.\$av
File ID:	SF-13-4
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	metric)	Sf-13-400	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		16.89 µm	S.D.:	3.219
Median:		17.64 µm	Variance:	10.36
Mean/Media	n ratio:	0.957	Skewness:	-0.159 Left skewed
Mode:		19.76 µm	Kurtosis:	0.442 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.845 µm	8.521 µr	m 17.64 µm	34.41 µm	71.38 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-13-5001.\$av Sf-13-5001.\$av
File ID:	SF-13-5
Optical model:	Fraunhofer.rf780z

Volume Stat	tistics (Geo	ometric)	Sf-13-5_00	1.\$av			
Calculations	s from 0.37	75 μm to 2000 μm					
Volume:		100%					
Mean:		10.47 µm	S.D.:	3.352			
Median:		10.87 µm	Variance:	11.23			
Mean/Media	an ratio:	0.963	Skewness:	-0.0024 Left skewed			
Mode:		13.61 µm	Kurtosis:	-0.033 Platykurtic			
<10%	<25%	<50%	<75%	<90%			
2.083 µm	4.801 µ	m 10.87 µm	22.65 µm	45.65 µm			

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-14-1001.\$av Sf-14-1001.\$av
File ID:	SF-14-1
Optical model:	Fraunhofer.rf780z

Volume Stati	stics (Geo	ometric)	Sf-14-100	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		12.88 µm	S.D.:	2.845
Median:		14.45 µm	Variance:	8.093
Mean/Media	n ratio:	0.891	Skewness:	-0.516 Left skewed
Mode:		18.00 µm	Kurtosis:	0.388 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.160 µm	7.187 µr	m 14.45 µm	25.63 µm	42.79 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-14-2001.\$av Sf-14-2001.\$av
File ID:	SF-14-2
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	metric)	Sf-14-200	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		14.77 µm	S.D.:	2.912
Median:		16.34 µm	Variance:	8.481
Mean/Media	n ratio:	0.904	Skewness:	-0.522 Left skewed
Mode:		19.76 µm	Kurtosis:	0.366 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.601 µm	8.079 µr	n 16.34 µm	29.91 µm	53.13 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-14-3001.\$av Sf-14-3 _001.\$av
File ID:	SF-14-3
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	metric)	Sf-14-300	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		18.80 µm	S.D.:	3.566
Median:		18.32 µm	Variance:	12.71
Mean/Media	n ratio:	1.026	Skewness:	0.124 Right skewed
Mode:		19.76 µm	Kurtosis:	0.517 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.066 µm	8.889 µr	m 18.32 μm	37.89 µm	95.98 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-14-4001.\$av Sf-14-4 _001.\$av
File ID:	SF-14-4
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-14-400	1.\$av				
Calculations	from 0.37	5 μm to 2000 μm						
Volume:		100%						
Mean:		16.95 µm	S.D.:	3.402				
Median:		17.14 µm	Variance:	11.58				
Mean/Media	n ratio:	0.989	Skewness:	0.0058 Right skewed				
Mode:		18.00 µm	Kurtosis:	0.461 Leptokurtic				
<10%	<25%	<50%	<75%	<90%				
3.706 µm	8.227 µr	m 17.14 µm	34.64 µm	77.90 µm				

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-14-5001.\$av Sf-14-5 001.\$av
File ID:	SF-14-5
Optical model:	Fraunhofer.rf780z

Volume Stati	stics (Geo	ometric)	Sf-14-500	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		15.49 µm	S.D.:	4.088
Median:		14.58 µm	Variance:	16.71
Mean/Media	n ratio:	1.062	Skewness:	0.208 Right skewed
Mode:		14.94 µm	Kurtosis:	-0.041 Platykurtic
<10%	<25%	<50%	<75%	<90%
2.649 µm	6.207 µr	m 14.58 µm	35.70 µm	106.7 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-15-1001.\$av Sf-15-1001.\$av
File ID:	SF-15-1
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-15-100	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		16.11 µm	S.D.:	3.045
Median:		17.46 µm	Variance:	9.271
Mean/Media	n ratio:	0.923	Skewness:	-0.374 Left skewed
Mode:		19.76 µm	Kurtosis:	0.505 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.845 µm	8.656 µr	m 17.46 µm	32.36 µm	59.91 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-15-2001.\$av Sf-15-2001.\$av
File ID:	SF-15-2
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	metric)	Sf-15-200	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		18.51 µm	S.D.:	2.883
Median:		20.29 µm	Variance:	8.310
Mean/Media	n ratio:	0.912	Skewness:	-0.558 Left skewed
Mode:		21.70 µm	Kurtosis:	0.752 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.831 µm	10.42 µr	n 20.29 µm	36.43 µm	64.82 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-15-3001.\$av Sf-15-3001.\$av
File ID:	SF-15-3
Optical model:	Fraunhofer.rf780z

Volume Stati	stics (Geo	ometric)	Sf-15-300	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		17.11 µm	S.D.:	3.130
Median:		18.44 µm	Variance:	9.796
Mean/Media	n ratio:	0.928	Skewness:	-0.346 Left skewed
Mode:		21.70 µm	Kurtosis:	0.338 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.908 µm	8.789 µr	m 18.44 µm	35.74 µm	68.52 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-15-4001.\$av Sf-15-4 _001.\$av
File ID:	SF-15-4
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-15-400	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		17.23 µm	S.D.:	2.978
Median:		18.95 µm	Variance:	8.868
Mean/Media	n ratio:	0.909	Skewness:	-0.486 Left skewed
Mode:		21.70 µm	Kurtosis:	0.515 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.197 μm	9.314 µr	m 18.95 µm	35.24 µm	62.39 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-15-5001.\$av Sf-15-5 001.\$av
File ID:	SF-15-5
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-15-500	1.\$av
Calculations	from 0.37	′5 μm to 2000 μm		
Volume:		100%		
Mean:		16.59 µm	S.D.:	3.027
Median:		18.75 µm	Variance:	9.161
Mean/Media	n ratio:	0.885	Skewness:	-0.596 Left skewed
Mode:		21.70 µm	Kurtosis:	0.215 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.727 µm	8.666 µı	m 18.75 µm	36.22 µm	63.77 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-16-1001.\$av Sf-16-1001.\$av
File ID:	SF-16-1
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-16-100	1.\$av				
Calculations	from 0.37	5 µm to 2000 µm						
Volume:		100%						
Mean:		15.93 µm	S.D.:	3.062				
Median:		17.27 µm	Variance:	9.375				
Mean/Media	in ratio:	0.922	Skewness:	-0.424 Left skewed				
Mode:		19.76 µm	Kurtosis:	0.234 Leptokurtic				
<10%	<25%	<50%	<75%	<90%				
3.673 µm	8.302 µr	m 17.27 µm	33.29 µm	64.17 µm				

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-16-2001.\$av Sf-16-2001.\$av
File ID:	SF-16-2
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-16-200	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		21.38 µm	S.D.:	3.429
Median:		21.44 µm	Variance:	11.76
Mean/Media	n ratio:	0.997	Skewness:	-0.025 Left skewed
Mode:		21.70 µm	Kurtosis:	0.654 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.771 μm	10.41 µr	m 21.44 μm	44.28 µm	98.51 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-16-3001.\$av Sf-16-3001.\$av
File ID:	SF-16-3
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-16-300	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		20.83 µm	S.D.:	3.399
Median:		21.30 µm	Variance:	11.55
Mean/Media	n ratio:	0.978	Skewness:	-0.148 Left skewed
Mode:		21.70 µm	Kurtosis:	0.417 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.515 µm	10.12 µr	m 21.30 µm	44.58 µm	96.63 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-16-4001.\$av Sf-16-4 _001.\$av
File ID:	SF-16-4
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-16-400	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		18.95 µm	S.D.:	3.504
Median:		19.31 µm	Variance:	12.28
Mean/Media	n ratio:	0.981	Skewness:	-0.093 Left skewed
Mode:		19.76 µm	Kurtosis:	0.275 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.891 µm	8.865 µr	m 19.31 µm	41.62 µm	92.28 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-16-5001.\$av Sf-16-5 001.\$av
File ID:	SF-16-5
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-16-500	1.\$av
Calculations	from 0.37	5 μm to 2000 μm		
Volume:		100%		
Mean:		16.99 µm	S.D.:	3.624
Median:		17.30 µm	Variance:	13.13
Mean/Media	n ratio:	0.982	Skewness:	-0.083 Left skewed
Mode:		18.00 µm	Kurtosis:	0.010 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.233 µm	7.550 µr	m 17.30 µm	39.08 µm	91.14 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-17-1001.\$av Sf-17-1001.\$av
File ID:	SF-17-1
Optical model:	Fraunhofer.rf780z

Volume Stati	stics (Geo	metric)	Sf-17-100	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		15.93 µm	S.D.:	3.003
Median:		17.99 µm	Variance:	9.016
Mean/Media	n ratio:	0.885	Skewness:	-0.572 Left skewed
Mode:		21.70 µm	Kurtosis:	0.255 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.615 µm	8.441 µr	m 17.99 µm	34.20 µm	59.14 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-17-2001.\$av Sf-17-2001.\$av
File ID:	SF-17-2
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-17-200	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		20.19 µm	S.D.:	3.124
Median:		21.92 µm	Variance:	9.761
Mean/Media	n ratio:	0.921	Skewness:	-0.439 Left skewed
Mode:		21.70 µm	Kurtosis:	0.399 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.595 µm	10.53 µr	m 21.92 μm	42.68 µm	79.99 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-17-3001.\$av Sf-17-3001.\$av
File ID:	SF-17-3
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-17-300	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		14.97 µm	S.D.:	3.376
Median:		16.27 µm	Variance:	11.40
Mean/Media	n ratio:	0.920	Skewness:	-0.233 Left skewed
Mode:		19.76 µm	Kurtosis:	-0.014 Platykurtic
<10%	<25%	<50%	<75%	<90%
2.916 µm	6.977 µr	m 16.27 μm	33.73 µm	66.46 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-17-4001.\$av Sf-17-4001.\$av
File ID:	SF-17-4
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-17-400	1.\$av				
Calculations	from 0.37	5 μm to 2000 μm						
Volume:		100%						
Mean:		16.38 µm	S.D.:	3.090				
Median:		18.47 µm	Variance:	9.545				
Mean/Media	an ratio:	0.887	Skewness:	-0.513 Left skewed				
Mode:		21.70 µm	Kurtosis:	0.197 Leptokurtic				
<10%	<25%	<50%	<75%	<90%				
3.562 µm	8.448 µı	m 18.47 μm	35.47 µm	63.30 µm				

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-17-5001.\$av Sf-17-5001.\$av
File ID:	SF-17-5
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-17-500	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		19.07 µm	S.D.:	3.166
Median:		20.99 µm	Variance:	10.03
Mean/Media	n ratio:	0.909	Skewness:	-0.426 Left skewed
Mode:		23.82 µm	Kurtosis:	0.396 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.212 µm	9.859 µr	m 20.99 µm	40.32 µm	76.38 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-18-1001.\$av Sf-18-1001.\$av
File ID:	SF-18-1
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-18-100	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		15.32 µm	S.D.:	2.978
Median:		17.05 µm	Variance:	8.871
Mean/Media	in ratio:	0.899	Skewness:	-0.533 Left skewed
Mode:		19.76 µm	Kurtosis:	0.300 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.573 µm	8.213 µr	m 17.05 μm	32.08 µm	56.84 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-18-2001.\$av Sf-18-2 001.\$av
File ID:	SF-18-2
Optical model:	Fraunhofer.rf780z

Volume Stati	stics (Geo	metric)	Sf-18-200	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		19.78 µm	S.D.:	3.347
Median:		20.51 µm	Variance:	11.20
Mean/Media	n ratio:	0.964	Skewness:	-0.153 Left skewed
Mode:		21.70 µm	Kurtosis:	0.535 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.377 µm	9.867 µr	n 20.51 µm	40.93 µm	86.58 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-18-3001.\$av Sf-18-3001.\$av
File ID:	SF-18-3
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-18-300	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		19.21 µm	S.D.:	3.152
Median:		20.60 µm	Variance:	9.932
Mean/Media	n ratio:	0.932	Skewness:	-0.398 Left skewed
Mode:		21.70 µm	Kurtosis:	0.386 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.403 µm	9.971 µr	m 20.60 µm	39.98 µm	80.15 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-18-4001.\$av Sf-18-4 _001.\$av
File ID:	SF-18-4
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-18-400	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		17.70 µm	S.D.:	3.150
Median:		19.22 µm	Variance:	9.920
Mean/Media	in ratio:	0.921	Skewness:	-0.409 Left skewed
Mode:		21.70 µm	Kurtosis:	0.281 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.952 µm	9.095 µr	m 19.22 μm	37.54 µm	72.97 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-18-5001.\$av Sf-18-5 001.\$av
File ID:	SF-18-5
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	metric)	Sf-18-5_00	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		19.56 µm	S.D.:	4.004
Median:		18.95 µm	Variance:	16.03
Mean/Media	in ratio:	1.033	Skewness:	0.083 Right skewed
Mode:		19.76 µm	Kurtosis:	0.010 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.426 µm	8.200 µr	n 18.95 µm	44.24 µm	129.7 µm

File name: C	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-19-1001.\$av Sf-19-1 001.\$av
File ID: S	SF-19-1
Optical model: F	Fraunhofer.rf780z

Volume Stati	istics (Geo	metric)	Sf-19-100	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		18.52 µm	S.D.:	3.038
Median:		20.43 µm	Variance:	9.228
Mean/Media	n ratio:	0.906	Skewness:	-0.506 Left skewed
Mode:		21.70 µm	Kurtosis:	0.498 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.372 µm	9.915 µr	m 20.43 µm	38.53 µm	69.24 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-19-2001.\$av Sf-19-2 _001.\$av
File ID:	SF-19-2
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	metric)	Sf-19-200	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		21.97 µm	S.D.:	3.138
Median:		24.19 µm	Variance:	9.847
Mean/Media	in ratio:	0.909	Skewness:	-0.524 Left skewed
Mode:		26.15 µm	Kurtosis:	0.458 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.976 µm	11.48 µn	n 24.19 µm	47.08 µm	87.45 μm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-19-3001.\$av Sf-19-3001.\$av
File ID:	SF-19-3
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-19-300	1.\$av				
Calculations	from 0.37	5 µm to 2000 µm						
Volume:		100%						
Mean:		24.31 µm	S.D.:	3.349				
Median:		25.86 µm	Variance:	11.22				
Mean/Media	n ratio:	0.940	Skewness:	-0.303 Left skewed				
Mode:		26.15 µm	Kurtosis:	0.512 Leptokurtic				
<10%	<25%	<50%	<75%	<90%				
5.245 µm	12.15 µr	m 25.86 µm	52.14 µm	103.5 µm				

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-19-4001.\$av Sf-19-4 _001.\$av
File ID:	SF-19-4
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-19-400	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		24.64 µm	S.D.:	3.319
Median:		26.45 µm	Variance:	11.01
Mean/Media	n ratio:	0.931	Skewness:	-0.405 Left skewed
Mode:		28.70 µm	Kurtosis:	0.411 Leptokurtic
<10%	<25%	<50%	<75%	<90%
5.297 µm	12.37 µı	m 26.45 µm	53.77 µm	107.0 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-19-5001.\$av Sf-19-5001.\$av
File ID:	SF-19-5
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-19-500	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		23.78 µm	S.D.:	3.413
Median:		26.14 µm	Variance:	11.65
Mean/Media	n ratio:	0.910	Skewness:	-0.431 Left skewed
Mode:		28.70 µm	Kurtosis:	0.241 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.701 µm	11.58 µr	m 26.14 μm	54.17 µm	106.0 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-20-1001.\$av Sf-20-1 001.\$av
File ID:	SF-20-1
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-20-100	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		19.33 µm	S.D.:	3.249
Median:		20.55 µm	Variance:	10.56
Mean/Media	in ratio:	0.941	Skewness:	-0.270 Left skewed
Mode:		21.70 µm	Kurtosis:	0.512 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.315 µm	9.864 µr	m 20.55 μm	40.21 µm	80.44 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-20-2001.\$av Sf-20-2 001.\$av
File ID:	SF-20-2
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-20-2_00	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		29.19 µm	S.D.:	3.994
Median:		27.81 µm	Variance:	15.95
Mean/Media	in ratio:	1.050	Skewness:	0.00033 Right skewed
Mode:		26.15 µm	Kurtosis:	0.108 Leptokurtic
<10%	<25%	<50%	<75%	<90%
5.397 µm	12.50 µr	m 27.81 µm	67.23 µm	207.1 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-20-3002.\$av Sf-20-3002 \$av
File ID:	SF-20-3
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-20-300	2.\$av
Calculations	from 0.37	5 μm to 2000 μm		
Volume:		100%		
Mean:		20.34 µm	S.D.:	3.179
Median:		22.23 µm	Variance:	10.11
Mean/Media	n ratio:	0.915	Skewness:	-0.481 Left skewed
Mode:		23.82 µm	Kurtosis:	0.303 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.488 µm	10.41 µı	m 22.23 μm	44.04 µm	84.56 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-20-4001.\$av Sf-20-4001.\$av
File ID:	SF-20-4
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-20-400	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		19.97 µm	S.D.:	4.514
Median:		19.02 µm	Variance:	20.38
Mean/Media	n ratio:	1.050	Skewness:	0.188 Right skewed
Mode:		19.76 µm	Kurtosis:	-0.110 Platykurtic
<10%	<25%	<50%	<75%	<90%
2.963 µm	7.539 µr	m 19.02 µm	46.97 µm	180.3 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-20-5001.\$av Sf-20-5 _001.\$av
File ID:	SF-20-5
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-20-5_00	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		14.54 µm	S.D.:	3.517
Median:		16.14 µm	Variance:	12.37
Mean/Media	in ratio:	0.901	Skewness:	-0.274 Left skewed
Mode:		21.70 µm	Kurtosis:	-0.216 Platykurtic
<10%	<25%	<50%	<75%	<90%
2.559 µm	6.438 µr	m 16.14 µm	35.14 µm	68.01 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-21-1001.\$av Sf-21-1001.\$av
File ID:	SF-21-1
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-21-100	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		15.69 µm	S.D.:	2.977
Median:		17.55 µm	Variance:	8.863
Mean/Media	n ratio:	0.894	Skewness:	-0.582 Left skewed
Mode:		19.76 µm	Kurtosis:	0.266 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.626 µm	8.395 µr	m 17.55 μm	33.53 µm	58.82 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-21-2001.\$av Sf-21-2001.\$av
File ID:	SF-21-2
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	metric)	Sf-21-200	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		22.88 µm	S.D.:	3.152
Median:		25.44 µm	Variance:	9.935
Mean/Media	n ratio:	0.899	Skewness:	-0.589 Left skewed
Mode:		28.70 µm	Kurtosis:	0.428 Leptokurtic
<10%	<25%	<50%	<75%	<90%
5.084 µm	11.88 µn	n 25.44 µm	50.62 µm	91.09 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-21-3001.\$av Sf-21-3001.\$av
File ID:	SF-21-3
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-21-300	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		25.95 µm	S.D.:	3.174
Median:		28.80 µm	Variance:	10.08
Mean/Media	n ratio:	0.901	Skewness:	-0.578 Left skewed
Mode:		37.97 µm	Kurtosis:	0.488 Leptokurtic
<10%	<25%	<50%	<75%	<90%
5.766 µm	13.46 µr	m 28.80 µm	57.16 µm	101.8 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-21-4001.\$av Sf-21-4001.\$av
File ID:	SF-21-4
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-21-400	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		24.17 µm	S.D.:	3.709
Median:		26.48 µm	Variance:	13.76
Mean/Media	n ratio:	0.913	Skewness:	-0.325 Left skewed
Mode:		31.51 µm	Kurtosis:	0.058 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.189 µm	10.87 µr	m 26.48 µm	58.61 µm	118.3 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-21-5001.\$av Sf-21-5001.\$av
File ID:	SF-21-5
Optical model:	Fraunhofer.rf780z

Volume Stati	stics (Geo	ometric)	Sf-21-500	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		15.70 µm	S.D.:	3.288
Median:		17.94 µm	Variance:	10.81
Mean/Media	n ratio:	0.875	Skewness:	-0.454 Left skewed
Mode:		23.82 µm	Kurtosis:	-0.054 Platykurtic
<10%	<25%	<50%	<75%	<90%
3.010 µm	7.528 µr	m 17.94 µm	36.35 µm	66.09 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-22-1001.\$av Sf-22-1001.\$av
File ID:	SF-22-1
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-22-100	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		18.90 µm	S.D.:	3.190
Median:		20.86 µm	Variance:	10.18
Mean/Media	n ratio:	0.906	Skewness:	-0.480 Left skewed
Mode:		21.70 µm	Kurtosis:	0.292 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.076 µm	9.673 µr	m 20.86 µm	41.32 µm	77.42 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-22-2001.\$av Sf-22-2 001.\$av
File ID:	SF-22-2
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	metric)	Sf-22-2_00	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		22.34 µm	S.D.:	3.353
Median:		23.62 µm	Variance:	11.24
Mean/Media	n ratio:	0.946	Skewness:	-0.248 Left skewed
Mode:		23.82 µm	Kurtosis:	0.538 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.864 µm	11.13 µn	n 23.62 µm	47.45 µm	94.60 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-22-3002.\$av
File ID'	St-22-3_002.\$av
Optical model:	Fraunhofer.rf780z

Volume Stati	stics (Geo	ometric)	Sf-22-3002	2.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		22.12 µm	S.D.:	2.998
Median:		24.56 µm	Variance:	8.988
Mean/Media	n ratio:	0.901	Skewness:	-0.680 Left skewed
Mode:		26.15 µm	Kurtosis:	0.526 Leptokurtic
<10%	<25%	<50%	<75%	<90%
5.289 µm	11.90 µr	m 24.56 µm	47.86 µm	85.61 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-22-4001.\$av Sf-22-4001.\$av
File ID:	SF-22-4
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	metric)	Sf-22-400	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		20.94 µm	S.D.:	3.761
Median:		22.03 µm	Variance:	14.14
Mean/Media	n ratio:	0.951	Skewness:	-0.076 Left skewed
Mode:		23.82 µm	Kurtosis:	0.247 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.768 µm	9.375 µr	n 22.03 µm	47.06 µm	101.9 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-22-5001.\$av Sf-22-5001.\$av
File ID:	SF-22-5
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-22-5_00	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		19.19 µm	S.D.:	4.020
Median:		20.87 µm	Variance:	16.16
Mean/Media	in ratio:	0.920	Skewness:	-0.015 Left skewed
Mode:		26.15 µm	Kurtosis:	0.183 Leptokurtic
<10%	<25%	<50%	<75%	<90%
2.977 µm	8.099 µı	m 20.87 μm	44.15 µm	95.98 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-23-1001.\$av Sf-23-1001.\$av
File ID:	SF-23-1
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	metric)	Sf-23-100	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		19.61 µm	S.D.:	3.470
Median:		20.43 µm	Variance:	12.04
Mean/Media	in ratio:	0.960	Skewness:	-0.127 Left skewed
Mode:		21.70 µm	Kurtosis:	0.374 Leptokurtic
<10%	<25%	<50%	<75%	<90%
3.967 µm	9.250 µr	m 20.43 µm	43.80 µm	89.94 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-23-2001.\$av Sf-23-2 001.\$av
File ID:	SF-23-2
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-23-2_00	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		22.90 µm	S.D.:	3.807
Median:		23.40 µm	Variance:	14.49
Mean/Media	n ratio:	0.978	Skewness:	-0.015 Left skewed
Mode:		21.70 µm	Kurtosis:	0.330 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.184 µm	10.10 µr	m 23.40 µm	52.94 µm	113.5 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-23-3001.\$av Sf-23-3001.\$av
File ID:	SF-23-3
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-23-300	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		32.12 µm	S.D.:	3.615
Median:		36.00 µm	Variance:	13.07
Mean/Media	n ratio:	0.892	Skewness:	-0.465 Left skewed
Mode:		41.68 µm	Kurtosis:	0.224 Leptokurtic
<10%	<25%	<50%	<75%	<90%
5.839 µm	14.75 µr	m 36.00 µm	80.03 µm	145.5 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-23-4001.\$av Sf-23-4001.\$av
File ID:	SF-23-4
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	metric)	Sf-23-400	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		25.81 µm	S.D.:	3.239
Median:		29.36 µm	Variance:	10.49
Mean/Media	n ratio:	0.879	Skewness:	-0.655 Left skewed
Mode:		34.59 µm	Kurtosis:	0.387 Leptokurtic
<10%	<25%	<50%	<75%	<90%
5.361 µm	13.17 µr	m 29.36 µm	59.65 µm	106.0 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-23-5001.\$av Sf-23-5 001.\$av
File ID:	SF-23-5
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	metric)	Sf-23-5_00	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		26.53 µm	S.D.:	3.726
Median:		29.47 µm	Variance:	13.89
Mean/Media	n ratio:	0.900	Skewness:	-0.362 Left skewed
Mode:		34.59 µm	Kurtosis:	0.135 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.537 µm	11.95 µn	n 29.47 µm	66.09 µm	125.8 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-24-1001.\$av Sf-24-1001.\$av
File ID:	SF-24-1
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-24-100	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		19.34 µm	S.D.:	3.154
Median:		21.31 µm	Variance:	9.945
Mean/Media	n ratio:	0.908	Skewness:	-0.534 Left skewed
Mode:		21.70 µm	Kurtosis:	0.212 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.206 µm	9.876 µr	m 21.31 µm	43.16 µm	80.46 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-24-2001.\$av Sf-24-2 001.\$av
File ID:	SF-24-2
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	metric)	Sf-24-200	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		19.95 µm	S.D.:	2.994
Median:		22.88 µm	Variance:	8.966
Mean/Media	n ratio:	0.872	Skewness:	-0.730 Left skewed
Mode:		26.15 µm	Kurtosis:	0.376 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.535 µm	10.60 µr	m 22.88 µm	44.58 µm	75.81 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-24-3001.\$av Sf-24-3 _001.\$av
File ID:	SF-24-3
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	metric)	Sf-24-300	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		24.32 µm	S.D.:	3.420
Median:		26.55 µm	Variance:	11.70
Mean/Media	n ratio:	0.916	Skewness:	-0.390 Left skewed
Mode:		34.59 µm	Kurtosis:	0.286 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.882 µm	11.65 µn	n 26.55 µm	56.46 µm	106.4 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-24-4001.\$av Sf-24-4001.\$av
File ID:	SF-24-4
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-24-400	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		28.91 µm	S.D.:	3.530
Median:		31.48 µm	Variance:	12.46
Mean/Media	n ratio:	0.918	Skewness:	-0.356 Left skewed
Mode:		37.97 µm	Kurtosis:	0.391 Leptokurtic
<10%	<25%	<50%	<75%	<90%
5.621 µm	13.72 µr	m 31.48 µm	67.59 µm	128.6 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-24-5001.\$av Sf-24-5 _001.\$av
File ID:	SF-24-5
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-24-5_00	1.\$av
Calculations	from 0.37	5 μm to 2000 μm		
Volume:		100%		
Mean:		28.60 µm	S.D.:	3.824
Median:		30.65 µm	Variance:	14.62
Mean/Media	n ratio:	0.933	Skewness:	-0.223 Left skewed
Mode:		41.68 µm	Kurtosis:	0.173 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.991 µm	12.61 µ	m 30.65 µm	68.56 µm	145.0 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-25-1001.\$av Sf-25-1001.\$av
File ID:	SF-25-1
Optical model:	Fraunhofer.rf780z

Volume Stati	stics (Geo	metric)	Sf-25-100	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		20.41 µm	S.D.:	3.134
Median:		22.28 µm	Variance:	9.820
Mean/Media	n ratio:	0.916	Skewness:	-0.449 Left skewed
Mode:		23.82 µm	Kurtosis:	0.500 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.644 µm	10.67 µr	n 22.28 µm	43.30 µm	80.91 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-25-2001.\$av Sf-25-2001.\$av
File ID:	SF-25-2
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	metric)	Sf-25-2_00	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		19.91 µm	S.D.:	3.367
Median:		21.34 µm	Variance:	11.33
Mean/Media	n ratio:	0.933	Skewness:	-0.291 Left skewed
Mode:		21.70 µm	Kurtosis:	0.269 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.089 µm	9.648 µr	m 21.34 µm	44.28 µm	87.99 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-25-3001.\$av Sf-25-3001.\$av
File ID:	SF-25-3
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-25-300	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		33.69 µm	S.D.:	3.614
Median:		35.29 µm	Variance:	13.06
Mean/Media	n ratio:	0.955	Skewness:	-0.240 Left skewed
Mode:		37.97 µm	Kurtosis:	0.585 Leptokurtic
<10%	<25%	<50%	<75%	<90%
6.793 µm	15.98 µ	m 35.29 μm	76.58 µm	155.5 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-25-4001.\$av Sf-25-4001.\$av
File ID:	SF-25-4
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-25-400	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		26.12 µm	S.D.:	3.269
Median:		29.19 µm	Variance:	10.69
Mean/Media	in ratio:	0.895	Skewness:	-0.574 Left skewed
Mode:		34.59 µm	Kurtosis:	0.309 Leptokurtic
<10%	<25%	<50%	<75%	<90%
5.452 µm	12.99 µr	m 29.19 µm	60.52 µm	109.4 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-25-5001.\$av Sf-25-5001.\$av
File ID:	SF-25-5
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	metric)	Sf-25-5_00	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		23.64 µm	S.D.:	3.308
Median:		26.82 µm	Variance:	10.94
Mean/Media	n ratio:	0.882	Skewness:	-0.569 Left skewed
Mode:		34.59 µm	Kurtosis:	0.226 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.733 µm	11.66 µn	n 26.82 µm	54.94 µm	99.41 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-26-1002.\$av Sf-26-1 002.\$av
File ID:	SF-26-1
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	metric)	Sf-26-100	2.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		27.36 µm	S.D.:	3.659
Median:		28.33 µm	Variance:	13.39
Mean/Media	in ratio:	0.966	Skewness:	-0.296 Left skewed
Mode:		26.15 µm	Kurtosis:	0.0047 Leptokurtic
<10%	<25%	<50%	<75%	<90%
5.134 µm	12.16 µr	n 28.33 µm	68.27 µm	146.2 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-26-2001.\$av Sf-26-2001.\$av
File ID:	SF-26-2
Optical model:	Fraunhofer.rf780z

Volume Stati	stics (Geo	ometric)	Sf-26-200	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		30.99 µm	S.D.:	3.901
Median:		30.78 µm	Variance:	15.22
Mean/Media	n ratio:	1.007	Skewness:	-0.250 Left skewed
Mode:		23.82 µm	Kurtosis:	-0.186 Platykurtic
<10%	<25%	<50%	<75%	<90%
5.445 µm	12.85 µr	m 30.78 µm	85.96 µm	186.2 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-26-3001.\$av Sf-26-3001.\$av
File ID:	SF-26-3
Optical model:	Fraunhofer.rf780z

Volume Statistics (Geometric)		Sf-26-300	1.\$av	
Calculations from 0.375 μm to 2000 μm				
Volume:		100%		
Mean:		28.66 µm	S.D.:	4.237
Median:		28.76 µm	Variance:	17.96
Mean/Media	n ratio:	0.997	Skewness:	-0.091 Left skewed
Mode:		23.82 µm	Kurtosis:	-0.174 Platykurtic
<10%	<25%	<50%	<75%	<90%
4.513 µm	11.09 µr	m 28.76 µm	76.10 µm	194.0 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-26-4001.\$av Sf-26-4001.\$av
File ID:	SF-26-4
Optical model:	Fraunhofer.rf780z

Volume Stati	stics (Geo	metric)	Sf-26-400	1.\$av
Calculations from 0.375 μm to 2000 μm				
Volume:		100%		
Mean:		23.53 µm	S.D.:	3.982
Median:		24.42 µm	Variance:	15.86
Mean/Media	n ratio:	0.964	Skewness:	-0.180 Left skewed
Mode:		23.82 µm	Kurtosis:	-0.240 Platykurtic
<10%	<25%	<50%	<75%	<90%
3.821 µm	9.431 µr	m 24.42 µm	62.16 µm	143.0 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-27-1001.\$av Sf-27-1001.\$av
File ID:	SF-27-1
Optical model:	Fraunhofer.rf780z

Volume Stati	plume Statistics (Geometric)		Sf-27-1007	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		28.44 µm	S.D.:	3.662
Median:		30.51 µm	Variance:	13.41
Mean/Media	n ratio:	0.932	Skewness:	-0.463 Left skewed
Mode:		26.15 µm	Kurtosis:	-0.058 Platykurtic
<10%	<25%	<50%	<75%	<90%
5.145 µm	12.69 µı	m 30.51 µm	74.39 µm	156.3 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-27-2001.\$av Sf-27-2001.\$av
File ID:	SF-27-2
Optical model:	Fraunhofer.rf780z

Volume Stati	Volume Statistics (Geometric)		Sf-27-200	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		29.70 µm	S.D.:	3.818
Median:		31.30 µm	Variance:	14.58
Mean/Media	n ratio:	0.949	Skewness:	-0.288 Left skewed
Mode:		34.59 µm	Kurtosis:	0.014 Leptokurtic
<10%	<25%	<50%	<75%	<90%
5.230 µm	12.79 µı	m 31.30 µm	75.81 µm	162.6 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-27-3001.\$av Sf-27-3001.\$av
File ID:	SF-27-3
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-27-300	1.\$av
Calculations from 0.375 μm to 2000 μm				
Volume:		100%		
Mean:		32.60 µm	S.D.:	4.263
Median:		31.88 µm	Variance:	18.17
Mean/Media	n ratio:	1.023	Skewness:	-0.185 Left skewed
Mode:		23.82 µm	Kurtosis:	-0.263 Platykurtic
<10%	<25%	<50%	<75%	<90%
5.025 µm	12.49 µr	m 31.88 µm	103.0 µm	200.2 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-27-4002.\$av Sf-27-4002.\$av
File ID:	SF-27-4
Optical model:	Fraunhofer.rf780z

Volume Stat	Volume Statistics (Geometric)		Sf-27-4002	2.\$av			
Calculations from 0.375 µm to 2000 µm							
Volume:		100%					
Mean:		26.97 µm	S.D.:	4.125			
Median:		29.30 µm	Variance:	17.02			
Mean/Media	n ratio:	0.921	Skewness:	-0.183 Left skewed			
Mode:		41.68 µm	Kurtosis:	-0.114 Platykurtic			
<10%	<25%	<50%	<75%	<90%			
4.088 µm	10.68 µı	m 29.30 µm	69.69 µm	159.6 µm			

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-28-1001.\$av Sf-28-1001.\$av
File ID:	SF-28-1
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-28-100	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		31.44 µm	S.D.:	4.200
Median:		31.49 µm	Variance:	17.64
Mean/Media	n ratio:	0.998	Skewness:	-0.163 Left skewed
Mode:		23.82 µm	Kurtosis:	-0.148 Platykurtic
<10%	<25%	<50%	<75%	<90%
4.981 µm	12.42 µr	m 31.49 µm	87.74 µm	202.2 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-28-2001.\$av Sf-28-2001.\$av
File ID:	SF-28-2
Optical model:	Fraunhofer.rf780z

Volume Stati	stics (Geo	metric)	Sf-28-2_00	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		23.76 µm	S.D.:	3.899
Median:		24.45 µm	Variance:	15.21
Mean/Media	n ratio:	0.971	Skewness:	-0.167 Left skewed
Mode:		21.70 µm	Kurtosis:	-0.117 Platykurtic
<10%	<25%	<50%	<75%	<90%
4.050 µm	9.878 µr	n 24.45 µm	60.69 µm	133.8 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-28-3001.\$av Sf-28-3001.\$av
File ID:	SF-28-3
Optical model:	Fraunhoter.rt780z

Volume Stat	istics (Geo	ometric)	Sf-28-300	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		28.35 µm	S.D.:	4.116
Median:		27.94 µm	Variance:	16.94
Mean/Media	an ratio:	1.015	Skewness:	-0.066 Left skewed
Mode:		23.82 µm	Kurtosis:	-0.019 Platykurtic
<10%	<25%	<50%	<75%	<90%
4.717 µm	11.52 µr	m 27.94 μm	73.54 µm	178.0 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-28-4001.\$av Sf-28-4001.\$av
File ID:	SF-28-4
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-28-400	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		23.67 µm	S.D.:	3.506
Median:		25.64 µm	Variance:	12.29
Mean/Media	n ratio:	0.923	Skewness:	-0.412 Left skewed
Mode:		28.70 µm	Kurtosis:	-0.043 Platykurtic
<10%	<25%	<50%	<75%	<90%
4.476 µm	10.86 µr	m 25.64 µm	57.27 µm	118.3 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-29-1001.\$av Sf-29-1 001.\$av
File ID:	SF-29-1
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-29-100	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		25.14 µm	S.D.:	3.327
Median:		27.12 µm	Variance:	11.07
Mean/Media	n ratio:	0.927	Skewness:	-0.430 Left skewed
Mode:		28.70 µm	Kurtosis:	0.396 Leptokurtic
<10%	<25%	<50%	<75%	<90%
5.339 µm	12.53 µr	m 27.12 μm	56.43 µm	108.1 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-29-2001.\$av Sf-29-2 001.\$av
File ID:	SF-29-2
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-29-200	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		26.73 µm	S.D.:	3.650
Median:		27.69 µm	Variance:	13.32
Mean/Media	n ratio:	0.965	Skewness:	-0.161 Left skewed
Mode:		26.15 µm	Kurtosis:	0.437 Leptokurtic
<10%	<25%	<50%	<75%	<90%
5.233 µm	12.42 µr	m 27.69 µm	61.14 µm	125.5 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-29-3001.\$av Sf-29-3001.\$av
File ID:	SF-29-3
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-29-300	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		23.21 µm	S.D.:	3.310
Median:		25.31 µm	Variance:	10.95
Mean/Media	n ratio:	0.917	Skewness:	-0.470 Left skewed
Mode:		26.15 µm	Kurtosis:	0.209 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.831 µm	11.40 µr	n 25.31 µm	53.05 µm	100.7 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-29-4001.\$av Sf-29-4001.\$av
File ID:	SF-29-4
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-29-400	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		30.95 µm	S.D.:	3.817
Median:		32.38 µm	Variance:	14.57
Mean/Media	in ratio:	0.956	Skewness:	-0.187 Left skewed
Mode:		37.97 µm	Kurtosis:	0.259 Leptokurtic
<10%	<25%	<50%	<75%	<90%
5.625 µm	13.65 µı	m 32.38 µm	74.37 µm	161.1 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-29-5001.\$av Sf-29-5 001.\$av
File ID:	SF-29-5
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-29-5_00	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		26.95 µm	S.D.:	3.624
Median:		28.83 µm	Variance:	13.13
Mean/Media	in ratio:	0.935	Skewness:	-0.259 Left skewed
Mode:		34.59 µm	Kurtosis:	0.257 Leptokurtic
<10%	<25%	<50%	<75%	<90%
5.122 µm	12.35 µr	m 28.83 µm	62.75 µm	126.3 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-30-1001.\$av Sf-30-1 001.\$av
File ID:	SF-30-1
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-30-100	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		21.23 µm	S.D.:	3.196
Median:		23.12 µm	Variance:	10.21
Mean/Media	n ratio:	0.918	Skewness:	-0.483 Left skewed
Mode:		23.82 µm	Kurtosis:	0.351 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.687 µm	10.88 µr	m 23.12 μm	46.45 µm	88.00 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-30-2001.\$av Sf-30-2001.\$av
File ID:	SF-30-2
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	metric)	Sf-30-200	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		24.47 µm	S.D.:	3.366
Median:		26.30 µm	Variance:	11.33
Mean/Media	n ratio:	0.930	Skewness:	-0.397 Left skewed
Mode:		26.15 µm	Kurtosis:	0.291 Leptokurtic
<10%	<25%	<50%	<75%	<90%
5.121 µm	11.86 µn	n 26.30 µm	56.06 µm	107.1 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-30-3001.\$av Sf-30-3001.\$av
File ID:	SF-30-3
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	Sf-30-300	1.\$av
Calculations	from 0.37	5 μm to 2000 μm		
Volume:		100%		
Mean:		32.07 µm	S.D.:	3.591
Median:		34.54 µm	Variance:	12.89
Mean/Media	n ratio:	0.929	Skewness:	-0.318 Left skewed
Mode:		37.97 µm	Kurtosis:	0.480 Leptokurtic
<10%	<25%	<50%	<75%	<90%
6.273 µm	15.17 μι	m 34.54 μm	74.05 µm	145.4 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-30-4001.\$av Sf-30-4 _001.\$av
File ID:	SF-30-4
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-30-400	1.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		28.94 µm	S.D.:	3.521
Median:		32.19 µm	Variance:	12.40
Mean/Media	n ratio:	0.899	Skewness:	-0.437 Left skewed
Mode:		37.97 µm	Kurtosis:	0.305 Leptokurtic
<10%	<25%	<50%	<75%	<90%
5.524 µm	13.70 µr	m 32.19 µm	68.56 µm	128.0 µm

File name:	C:\Users\smcwilliams74\Desktop\CF3284_PSD Data\PSD Data\Sf-30-5001.\$av Sf-30-5001.\$av
File ID:	SF-30-5
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	ometric)	Sf-30-5_00	1.\$av
Calculations	from 0.37	5 μm to 2000 μm		
Volume:		100%		
Mean:		27.01 µm	S.D.:	3.487
Median:		31.60 µm	Variance:	12.16
Mean/Media	n ratio:	0.855	Skewness:	-0.607 Left skewed
Mode:		41.68 µm	Kurtosis:	0.163 Leptokurtic
<10%	<25%	<50%	<75%	<90%
4.875 µm	12.82 µı	m 31.60 µm	66.63 µm	117.6 µm

	001.\$av	 			1 00_	Data
File ID: 322022_1pm_control						

Volume Stat	istics (Geo	metric)	322022_1pm	_control001.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		35.44 µm	S.D.:	1.675
Median:		37.01 µm	Variance:	2.807
Mean/Media	n ratio:	0.958	Skewness:	-2.011 Left skewed
Mode:		37.97 µm	Kurtosis:	12.99 Leptokurtic
<10%	<25%	<50%	<75%	<90%
21.84 µm	28.92 µr	m 37.01 µm	46.23 µm	56.79 µm

File name:	C:\Users\smcwilliams74\Documents\projects\CF3284_Swan_Island_SEDFlume\SWID_SEDflume_Data\SIB_PSD_data\SWan_Island_PSD_data\PSD Data\3162022_2
Optical model:	Fraunhofer.rf780z

Volume Stati	stics (Geo	metric)	3162022_230	0pm_control002.\$av
Calculations	from 0.375	5 µm to 2000 µm		
Volume:		100%		
Mean:		35.13 µm	S.D.:	1.688
Median:		37.10 µm	Variance:	2.851
Mean/Media	n ratio:	0.947	Skewness:	-2.567 Left skewed
Mode:		37.97 µm	Kurtosis:	16.07 Leptokurtic
<10%	<25%	<50%	<75%	<90%
21.84 µm	29.01 µn	n 37.10 µm	46.21 µm	56.35 µm

File name:	C:\Users\smcwilliams74\Documents\projects\CF3284_Swan_Island_SEDFlume\SWID_SEDflume_Data\SIB_PSD_data\SWan_Island_PSD_data\PSD Data\3
	3172022_10am_control001.\$av
File ID:	3172022_10am_control
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	metric)	3172022_10	am_control001.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		34.76 µm	S.D.:	1.653
Median:		36.93 µm	Variance:	2.732
Mean/Media	n ratio:	0.941	Skewness:	-2.898 Left skewed
Mode:		37.97 µm	Kurtosis:	17.56 Leptokurtic
<10%	<25%	<50%	<75%	<90%
21.84 µm	28.96 µn	n 36.93 µm	45.82 µm	55.50 µm

File name:	C:\Users\smcwilliams74\Documents\projects\CF3284_Swan_Island_SEDFlume\SWID_SEDflume_Data\SIB_PSD_data\SWan_Island_PSD_data\PSD Data\
	3172022_145pm_control001.\$av
File ID:	3172022_145pm_control
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	metric)	3172022_14	5pm_control001.\$av
Calculations	from 0.375	5 µm to 2000 µm		
Volume:		100%		
Mean:		35.68 µm	S.D.:	1.641
Median:		37.18 µm	Variance:	2.693
Mean/Media	n ratio:	0.960	Skewness:	-1.811 Left skewed
Mode:		37.97 µm	Kurtosis:	10.59 Leptokurtic
<10%	<25%	<50%	<75%	<90%
22.05 µm	29.06 µn	n 37.18 µm	46.49 µm	57.10 µm

File name:	C:\Users\smcwilliams74\Documents\projects\CF3284_Swan_Island_SEDFlume\SWID_SEDflume_Data\SIB_PSD_data\SWan_Island_PSD_data\PSD Data\
	3172022_950am_control001.\$av
File ID:	3172022_950am_control
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	metric)	3172022_95	0am_control001.\$av
Calculations	from 0.375	5 µm to 2000 µm		
Volume:		100%		
Mean:		36.14 µm	S.D.:	1.640
Median:		37.51 µm	Variance:	2.689
Mean/Media	n ratio:	0.964	Skewness:	-1.771 Left skewed
Mode:		37.97 µm	Kurtosis:	10.15 Leptokurtic
<10%	<25%	<50%	<75%	<90%
22.25 µm	29.29 µn	n 37.51 µm	47.03 µm	58.50 µm

File name:	C:\Users\smcwilliams74\Documents\projects\CF3284_Swan_Island_SEDFlume\SWID_SEDflume_Data\SIB_PSD_data\SWan_Island_PSD_data\PSD Data\
	3232022_10am_control001.\$av
File ID:	3232022_10am_control
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	metric)	3232022_10	am_control001.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		35.54 µm	S.D.:	1.611
Median:		37.11 µm	Variance:	2.594
Mean/Media	n ratio:	0.958	Skewness:	-2.031 Left skewed
Mode:		37.97 µm	Kurtosis:	11.43 Leptokurtic
<10%	<25%	<50%	<75%	<90%
22.23 µm	29.14 µn	n 37.11 µm	46.26 µm	56.69 µm

File name:	C:\Users\smcwilliams74\Documents\projects\CF3284_Swan_Island_SEDFlume\SWID_SEDflume_Data\SIB_PSD_data\SWan_Island_PSD_data\PSD Data\3
	3232022_240pm_control001.\$av
File ID:	3232022_240pm_control
Optical model:	Fraunhofer.rf780z

Volume Stati	stics (Geo	metric)	3232022_24	0pm_control001.\$av
Calculations	from 0.375	5 µm to 2000 µm		
Volume:		100%		
Mean:		36.18 µm	S.D.:	1.675
Median:		37.46 µm	Variance:	2.807
Mean/Media	n ratio:	0.966	Skewness:	-1.713 Left skewed
Mode:		37.97 µm	Kurtosis:	10.65 Leptokurtic
<10%	<25%	<50%	<75%	<90%
22.10 µm	29.23 µn	n 37.46 µm	47.02 µm	59.04 µm

File name:	C:\Users\smcwilliams74\Documents\projects\CF3284_Swan_Island_SEDFlume\SWID_SEDflume_Data\SIB_PSD_data\SWan_Island_PSD_data\PSD Data\3
	3232022_245pm_control001.\$av
File ID:	3232022_245pm_control
Optical model:	Fraunhofer.rf780z

Volume Stati	stics (Geo	metric)	3232022_24	5pm_control001.\$av
Calculations	from 0.375	5 μm to 2000 μm		
Volume:		100%		
Mean:		35.80 µm	S.D.:	1.689
Median:		37.36 µm	Variance:	2.853
Mean/Media	n ratio:	0.958	Skewness:	-2.375 Left skewed
Mode:		37.97 µm	Kurtosis:	14.75 Leptokurtic
<10%	<25%	<50%	<75%	<90%
22.07 µm	29.19 µn	n 37.36 µm	46.81 µm	58.36 µm

File name:	C:\Users\smcwilliams74\Documents\projects\CF3284_Swan_Island_SEDFlume\SWID_SEDflume_Data\SIB_PSD_data\SWan_Island_PSD_data\PSD Data\3
	3232022_250pm_control001.\$av
File ID:	3232022_250pm_control
Optical model:	Fraunhofer.rf780z

Volume Stat	istics (Geo	metric)	3232022_25	0pm_control001.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		34.88 µm	S.D.:	1.606
Median:		36.82 µm	Variance:	2.579
Mean/Media	n ratio:	0.947	Skewness:	-2.662 Left skewed
Mode:		37.97 µm	Kurtosis:	16.45 Leptokurtic
<10%	<25%	<50%	<75%	<90%
22.04 µm	28.93 µn	n 36.82 µm	45.62 µm	54.96 µm

File name:	C:\Users\smcwilliams74\Documents\projects\CF3284_Swan_Island_SEDFlume\SWID_SEDflume_Data\SIB_PSD_data\SWan_Island_PSD_data\PSD Data\
	3282022_11am_control002.\$av
File ID:	3282022_11am_control
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	metric)	3282022_11a	am_control002.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		34.95 µm	S.D.:	1.671
Median:		36.92 µm	Variance:	2.792
Mean/Media	n ratio:	0.947	Skewness:	-2.403 Left skewed
Mode:		37.97 µm	Kurtosis:	13.64 Leptokurtic
<10%	<25%	<50%	<75%	<90%
21.68 µm	28.94 µn	n 36.92 µm	46.02 µm	56.13 µm

File name:	C:\Users\smcwilliams74\Documents\projects\CF3284_Swan_Island_SEDFlume\SWID_SEDflume_Data\SIB_PSD_data\SWan_Island_PSD_data\PSD Data\
	3302022_1pm_control001.\$av
File ID:	3302022_1pm_control
Optical model:	Fraunhofer.rf780z

Volume Stati	stics (Geo	metric)	3302022_1p	m_control001.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		36.39 µm	S.D.:	1.656
Median:		37.73 µm	Variance:	2.744
Mean/Media	n ratio:	0.964	Skewness:	-2.025 Left skewed
Mode:		37.97 µm	Kurtosis:	12.52 Leptokurtic
<10%	<25%	<50%	<75%	<90%
22.48 µm	29.51 µr	m 37.73 µm	47.30 µm	59.38 µm

File name:	C:\Users\smcwilliams74\Documents\projects\CF3284_Swan_Island_SEDFlume\SWID_SEDflume_Data\SIB_PSD_data\SWan_Island_PSD_data\PSD Data\33
	3302022_10am_control001.\$av
File ID:	3302022_10am_control
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	metric)	3302022_10	am_control001.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		35.46 µm	S.D.:	1.563
Median:		36.93 µm	Variance:	2.442
Mean/Media	n ratio:	0.960	Skewness:	-1.667 Left skewed
Mode:		37.97 µm	Kurtosis:	9.472 Leptokurtic
<10%	<25%	<50%	<75%	<90%
22.22 µm	29.01 µr	n 36.93 µm	45.87 µm	55.61 µm

File name:	C:\Users\smcwilliams74\Documents\projects\CF3284_Swan_Island_SEDFlume\SWID_SEDflume_Data\SIB_PSD_data\SWan_Island_PSD_data\PSD Data\33
	3302022_110pm_control001.\$av
File ID:	3302022_110pm_control
Optical model:	Fraunhofer.rf780z

Volume Stati	istics (Geo	ometric)	3302022_110	0pm_control001.\$av
Calculations	from 0.37	5 µm to 2000 µm		
Volume:		100%		
Mean:		35.09 µm	S.D.:	1.580
Median:		37.01 µm	Variance:	2.496
Mean/Media	in ratio:	0.948	Skewness:	-2.335 Left skewed
Mode:		37.97 µm	Kurtosis:	12.83 Leptokurtic
<10%	<25%	<50%	<75%	<90%
22.22 µm	29.09 µr	m 37.01 µm	45.85 µm	55.13 µm

APPENDIX B

SEDFLUME CORE RESULTS

This page was intentionally left blank.

Sample Depth (cm)	Median Grain Size (µm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	15.26	1.05	0.2	11.8	0.1	0.2	0.16	0.14	0.14
2.1	15.09	1.08	0.25	11.6	0.2	0.4	0.32	0.34	0.34
6.9	16.03	1.1	0.29	11.7	0.4	0.8	0.52	0.55	0.55
9	14.58	1.11	0.31	11.4	0.4	0.8	0.52	0.53	0.53
13.6	14.19	1.16	0.37	10.3	0.4	0.8	0.64	0.67	0.67
Mean	15.03	1.10	0.28	11.4	0.3	0.6	0.43	0.45	0.45

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	2.1	6.06E-05	1.36	0.99
2	2.1	6.9	4.66E-06	2.5	0.99
3	6.9	9	9.06E-07	2.77	0.96
4	9	11.6	2.06E-06	2.32	0.94
5	11.6	16.1	3.86E-07	2.93	0.95

		Units:
		µm = micrometers
	_	<i>cm</i> = <i>centimeters</i>
Prepared on 6/13/2022 PACIFIC groundwater GROUP	intogral	cm/s = centimeters per second
SEDflume Sampling Summary	ווונפיומו	g/cm ³ = grams per cubic centimeter
Swan Island Basin BRIDGEWATER GROUP	consulting inc.	Pa = Pascal

(5) Power Law Best-Fit Coefficients per Interval

Figure B-1 Core SF01

(5) Power Law Best-Fit Coefficients per Interval

Sample Depth (cm)	Median Grain Size (μm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	14.28	1.05	0.21	12.6	0.1	0.2	0.16	0.14	0.14
4.6	15.24	1.10	0.28	11.3	0.2	0.4	0.24	0.19	0.20
10.5	15.14	1.13	0.34	11.6	0.4	0.8	0.64	0.6	0.60
15.6	17.03	1.22	0.47	10.0	0.4	0.8	0.64	0.75	0.75
21.3	21.08	1.25	0.52	10.0	0.4	0.8	0.64	0.69	0.69
Mean	16.55	1.15	0.36	11.1	0.3	0.6	0.46	0.48	0.48

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	4.5	5.39E-05	1.71	0.98
2	4.5	10.4	3.8E-05	1.48	0.96
3	10.4	15.5	1.23E-06	2.45	0.98
4	15.5	21.2	1.72E-06	2.01	0.94
5	21.2	24.5	2.67E-06	1.88	0.97

|--|

Figure B-2 Core SF02

(5) Power Law Best-Fit Coefficients per Interval

Sample Depth (cm)	Median Grain Size (μm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	13.56	1.06	0.23	13.1	0.1	0.2	0.16	0.16	0.16
3	15.01	1.06	0.24	13.7	0.2	0.4	0.28	0.28	0.28
6.3	14.11	1.08	0.27	12.4	0.4	0.8	0.52	0.5	0.50
12.3	12.50	1.14	0.35	11.1	0.8	1.6	0.9	0.88	0.88
15.9	12.89	1.14	0.36	12.2	0.8	1.6	1.28	1.41	1.41
Mean	13.61	1.10	0.29	12.5	0.5	0.9	0.63	0.65	0.65

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	3	4.69E-05	1.66	0.98
2	3	6.3	1.7E-05	1.75	0.96
3	6.3	11	3.32E-06	2.11	0.99
4	12.3	15.9	2.09E-07	2.83	0.95
5	15.9	18.2	9.46E-08	2.63	0.90

Prepared on 6/13/2022 SEDflume Sampling Summary Swan Island Basin	Units: µm = micrometers cm = centimeters cm/s = centimeters per second g/cm ³ = grams per cubic centimeter Pa = Pascal
---	--

Figure B-3 Core SF03

Sample Depth (cm)	Median Grain Size (µm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	14.27	1.09	0.27	12.2	0.1	0.2	0.16	0.17	0.17
2.6	12.42	1.12	0.32	11.0	0.2	0.4	0.24	0.21	0.21
5.7	11.78	1.17	0.4	10.6	0.2	0.4	0.26	0.22	0.22
9.9	9.38	1.21	0.45	9.9	0.2	0.4	0.32	0.35	0.35
12.6	14.82	1.24	0.52	10.5	0.2	0.4	0.32	0.35	0.35
Mean	12.53	1.17	0.39	10.8	0.2	0.4	0.26	0.26	0.26

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	2.6	3.34E-05	2.12	0.94
2	2.6	5.7	2.23E-05	1.99	0.98
3	5.7	9.9	2.53E-05	1.74	0.94
4	9.9	12.6	1.05E-05	1.79	0.9
5	12.6	15.7	5.9E-06	2.25	0.92

Prepared on 6/13/2022 SEDflume Sampling Summary Swan Island Basin	Inits: m = micrometers m = centimeters m/s = centimeters per second /cm ³ = grams per cubic centimeter a = Pascal
---	---

(5) Power Law Best-Fit Coefficients per Interval

Figure B-4 Core SF04

Sample Depth (cm)	Median Grain Size (µm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	14.93	1.1	0.29	12.0	0.1	0.2	0.16	0.16	0.16
2	17.83	1.16	0.38	11.1	0.2	0.4	0.4	0.47	0.40
4.2	17.14	1.16	0.38	10.9	0.4	0.8	0.64	0.62	0.62
8	14.17	1.21	0.46	10.4	0.4	0.8	0.52	0.54	0.54
10.8	9.01	1.24	0.5	9.7	0.4	0.8	0.64	0.70	0.70
Mean	14.62	1.17	0.40	10.8	0.3	0.6	0.47	0.50	0.48

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	2	4.71E-05	1.54	0.97
2	2	4.2	1.02E-06	2.95	0.93
3	4.2	8	5.11E-07	2.88	0.97
4	8	10.8	1.1E-06	2.67	0.96
5	10.8	15.2	7.12E-07	2.55	0.98

Prepared on 6/13/2022 SEDflume Sampling Summary Swan Island Basin	Units: µm = micrometers cm = centimeters cm/s = centimeters per second g/cm ³ = grams per cubic centimeter Pa = Pascal
---	--

(5) Power Law Best-Fit Coefficients per Interval

Figure B-5 Core SF05

Sample Depth (cm)	Median Grain Size (µm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	13.35	1.08	0.27	12.8	0.1	0.2	0.14	0.13	0.13
1.7	16.14	1.14	0.36	11.6	0.2	0.4	0.32	0.34	0.34
4.8	16.44	1.14	0.36	12.2	0.4	0.8	0.64	0.65	0.65
9.4	15.5	1.14	0.38	12.9	0.4	0.8	0.8	0.91	0.80
14.2	14.44	1.17	0.4	11.8	0.4	0.8	0.64	0.63	0.63
Mean	15.17	1.13	0.35	12.3	0.3	0.6	0.51	0.54	0.51

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	1.7	6.7E-05	1.35	0.94
2	1.7	4.8	1.12E-05	1.79	0.97
3	4.8	9.4	9.42E-07	2.49	1
4	9.4	14.2	9.21E-08	3.16	0.99
5	14.2	18.8	9.24E-07	2.54	0.97

Prepared on 6/13/2022	PACIFIC groundwater GROUP	intogral	Units: µm = micrometers cm = centimeters cm/s = centimeters per second
SEDflume Sampling Summary Swan Island Basin	HydroGeoLogic, Inc HydroGeoLogic, Inc BRIDGEWATER GROUP	consulting inc.	g/cm³ = grams per cubic centimeter Pa = Pascal
			1

(5) Power Law Best-Fit Coefficients per Interval

Figure B-6 Core SF06

(5) Power Law Best-Fit Coefficients per Interval

Sample Depth (cm)	Median Grain Size (µm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	14.6	1.05	0.19	9.7	0.2	0.4	0.32	0.34	0.34
1.5	13.66	1.15	0.33	8.2	0.4	0.8	0.52	0.49	0.49
4.3	12.95	1.23	0.47	7.7	0.2	0.4	0.32	0.34	0.34
8.4	10.56	1.22	0.44	8.0	0.4	0.8	0.8	0.85	0.80
14.4	14.7	1.16	0.35	8.9	0.4	0.8	0.52	0.45	0.45
Mean	13.29	1.16	0.36	8.5	0.3	0.6	0.50	0.49	0.48

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	1.5	4.6E-06	2.52	0.96
2	1.5	4.3	3.61E-06	2.08	0.99
3	4.3	8.4	1.64E-05	1.47	0.96
4	8.4	8.9	1.14E-07	3.17	1
5	14.4	19.9	5.01E-06	2	0.98

		Units:
		μ <i>m</i> = <i>micrometers</i>
		<i>cm</i> = <i>centimeters</i>
Prepared on 6/13/2022 PACIFIC groundwater GROU	intogral	<i>cm/s</i> = <i>centimeters per second</i>
SEDflume Sampling Summary		g/cm ³ = grams per cubic centimeter
Swan Island Basin BRIDGEWATER GROUP	Constraining inc.	Pa = Pascal

Figure B-7 Core SF07

(5) Power Law Best-Fit Coefficients per Interval

Sample Depth (cm)	Median Grain Size (µm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	18.96	1.10	0.26	8.8	0.1	0.2	0.16	0.16	0.16
1.7	17.92	1.14	0.31	7.9	0.4	0.8	0.64	0.62	0.62
5.8	17.52	1.17	0.37	8.0	0.4	0.8	0.64	0.70	0.70
8.5	18.54	1.20	0.41	8.0	0.4	0.8	0.56	0.57	0.57
12.5	16.78	1.25	0.48	6.6	0.4	0.8	0.64	0.63	0.63
Mean	17.94	1.17	0.37	7.9	0.3	0.7	0.53	0.54	0.54

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	1.7	3.05E-05	2.65	0.98
2	1.7	5.8	2.85E-07	3.2	0.95
3	5.8	8.5	2.92E-07	3	0.93
4	8.5	12.5	3.61E-07	3.22	1
5	12.5	18.7	8.55E-07	2.58	1

			Units:
			μ <i>m</i> = micrometers
			<i>cm</i> = <i>centimeters</i>
Prepared on 6/13/2022	PACIFIC groundwater GROUP	intogral	<i>cm/s</i> = <i>centimeters per second</i>
SEDflume Sampling Summary	HydroGeoLogic, Inc MOTT M		g/cm ³ = grams per cubic centimeter
Swan Island Basin	BRIDGEWATER GROUP	Consulting inc.	Pa = Pascal

Figure B-8 Core SF08

(5) Power Law Best-Fit Coefficients per Interval

Sample Depth (cm)	Median Grain Size (µm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	12.48	1.06	0.22	11.2	0.1	0.2	0.20	0.24	0.20
2	13.75	1.09	0.26	10.6	0.4	0.8	0.52	0.49	0.49
5.5	16.69	1.11	0.29	10.2	0.4	0.8	0.80	0.83	0.80
7.2	16.24	1.12	0.30	10.1	0.8	1.6	1.04	1.16	1.16
10	13.63	1.16	0.36	9.4	0.4	0.8	0.64	0.66	0.66
Mean	14.56	1.11	0.29	10.3	0.4	0.8	0.64	0.68	0.66

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	2	1.61E-05	2.04	0.95
2	2	5.5	2.5E-06	2.33	0.98
3	5.5	7.2	6.99E-07	2.35	0.99
4	7.2	10	7.21E-08	2.95	0.86
5	10	14	2.11E-06	2.05	1

		Units:
		$\mu m = micrometers$
		<i>cm</i> = <i>centimeters</i>
Prepared on 6/13/2022	PACIFIC groundwater GROUP	<i>cm/s</i> = <i>centimeters per second</i>
SEDflume Sampling Summary		g/cm ³ = grams per cubic centimeter
Swan Island Basin	BRIDGEWATER GROUP	Pa = Pascal

Figure B-9 Core SF09

(5) Power Law Best-Fit Coefficients per Interval

Sample Depth (cm)	Median Grain Size (μm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	15.06	1.07	0.24	11.7	0.1	0.2	0.20	0.25	0.20
1.2	16.34	1.08	0.24	9.2	0.2	0.4	0.40	0.45	0.40
3.5	16.01	1.17	0.39	10.2	0.4	0.8	0.64	0.74	0.74
6.3	18.08	1.17	0.38	10.0	0.4	0.8	0.64	0.72	0.72
9	14.67	1.11	0.30	10.6	0.8	1.6	1.04	1.14	1.14
Mean	16.03	1.12	0.31	10.3	0.4	0.8	0.58	0.66	0.64

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	1.2	1.79E-05	1.91	0.93
2	1.2	3.5	8E-06	1.67	1
3	3.5	6.3	1.59E-06	2.06	0.89
4	6.3	9	2.54E-06	1.85	0.91
5	9	13.5	1.41E-07	2.7	0.94

Swan Island Basin BRIDGEWATER GROUP	Prepared on 6/13/2022 SEDflume Sampling Summary Swan Island Basin	Units: $\mu m = micrometers$ cm = centimeters cm/s = centimeters per second $g/cm^3 = grams per cubic centimeter$ Pa = Pascal
-------------------------------------	---	--

(4) Wet bulk density and median particle size (D50) with depth

Figure B-10 Core SF10

Sample Depth (cm)	Median Grain Size (µm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	13.46	1.06	0.22	11.6	0.1	0.2	0.16	0.19	0.19
2.3	16.52	1.13	0.32	9.0	0.2	0.4	0.32	0.36	0.36
4.8	15.80	1.17	0.36	7.3	0.4	0.8	0.64	0.69	0.69
7.1	14.65	1.17	0.37	9.2	0.4	0.8	0.80	0.98	0.80
10.9	15.22	1.20	0.43	9.5	0.8	1.6	1.28	1.27	1.27
Mean	15.13	1.15	0.34	9.3	0.4	0.8	0.64	0.70	0.66

Interval	Depth Start (cm)	Depth Finish (cm)	A	n	r ²
1	0	2.3	3.8E-05	1.56	0.87
2	2.3	4.8	1.58E-05	1.43	0.87
3	4.8	7.1	1.21E-06	2.29	0.92
4	7.1	10.9	1.23E-07	2.93	0.97
5	10.9	15.8	4.92E-08	3	0.97

Prepared on 6/13/2022 SEDflume Sampling Summary Swan Island Basin	oundwater GROUP	Units: µm = micrometers cm = centimeters cm/s = centimeters per second g/cm ³ = grams per cubic centimeter Pa = Pascal
		ra – rascai

(5) Power Law Best-Fit Coefficients per Interval

Figure B-11 Core SF11

(5) Power Law Best-Fit Coefficients per Interval

Sample Depth (cm)	Median Grain Size (μm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	14.78	1.08	0.24	10.9	0.1	0.2	0.20	0.23	0.20
1.5	14.79	1.13	0.32	10.0	0.4	0.8	0.64	0.69	0.69
5	16.04	1.14	0.33	9.3	0.4	0.8	0.64	0.70	0.70
8	8.87	1.31	0.58	6.3	0.8	1.6	1.28	1.28	1.28
11.2	8.98	1.26	0.48	5.4	0.8	1.6	1.28	1.42	1.42
Mean	12.69	1.18	0.39	8.4	0.5	1.0	0.81	0.86	0.86

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	1.5	2.64E-05	1.57	0.98
2	1.5	5	2.02E-06	2.02	0.97
3	5	8	3.22E-06	1.77	0.96
4	8	11.2	6.3E-08	2.89	0.99
5	11.2	15.5	1.48E-07	2.46	0.96

			Units:
			μ <i>m</i> = <i>micrometers</i>
			cm = centimeters
Prepared on 6/13/2022	PACIFIC groundwater GROUP	intogra	<i>cm/s</i> = <i>centimeters per second</i>
SEDflume Sampling Summary	HydroGeoLogic, Inc MOTT M	ווונייומו	g/cm ³ = grams per cubic centimeter
Swan Island Basin	BRIDGEWATER GROUP	consulting inc.	Pa = Pascal

Figure B-12 Core SF12

Sample Depth (cm)	Median Grain Size (μm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	17.84	1.04	0.20	12.5	0.1	0.2	0.16	0.16	0.16
1.8	16.83	1.13	0.33	10.5	0.4	0.8	0.80	0.80	0.80
6.4	17.17	1.16	0.37	9.9	0.4	0.8	0.80	0.88	0.80
10.7	17.64	1.27	0.54	8.4	0.2	0.4	0.32	0.39	0.39
15.3	10.87	1.23	0.47	7.7	0.4	0.8	0.64	0.66	0.66
Mean	16.07	1.17	0.38	9.8	0.3	0.6	0.54	0.58	0.56

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	1.8	5.03E-05	1.54	0.94
2	1.8	6.4	2.47E-07	2.88	0.99
3	6.4	10.7	6.63E-07	2.3	0.99
4	10.7	15.3	1.22E-05	1.56	0.91
5	15.3	18.8	1.43E-06	2.26	0.93

Prepared on 6/13/2022 SEDflume Sampling Summary Swan Island Basin Prepared on 6/13/2022 Image: Second state couple Image: State couple Image: State couple Image: State couple	Prepared on 6/13/2022 SEDflume Sampling Summary Swan Island Basin
---	---

(5) Power Law Best-Fit Coefficients per Interval

Figure B-13 Core SF13

Sample Depth (cm)	Median Grain Size (µm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	14.45	1.1	0.25	7.3	0.2	0.4	0.32	0.32	0.32
1.7	16.34	1.13	0.29	7.4	0.4	0.8	0.64	0.66	0.66
4.6	18.32	1.18	0.37	7.2	0.4	0.8	0.64	0.73	0.73
7.6	17.14	1.17	0.35	7.4	0.8	1.6	1.28	1.19	1.19
14.6	14.58	1.24	0.47	6.8	0.8	1.6	1.12	1.17	1.17
Mean	16.17	1.16	0.35	7.2	0.5	1.0	0.80	0.81	0.81

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	1.7	1.2E-05	1.84	0.97
2	1.7	4.6	3.45E-07	2.99	1
3	4.6	7.6	1.24E-06	2.21	0.91
4	7.6	14.6	1.17E-07	2.73	0.97
5	14.6	18.6	3.81E-07	2.27	0.95

			Units:
			μm = micrometers
		_	<i>cm</i> = <i>centimeters</i>
Prepared on 6/13/2022	PACIFIC groundwater GROUP	intogra	cm/s = centimeters per second
SEDflume Sampling Summary	HydroGeoLogic, Inc MOTT MACRONALD		g/cm ³ = grams per cubic centimeter
Swan Island Basin	BRIDGEWATER GROUP	Consulting Inc.	Pa = Pascal

(5) Power Law Best-Fit Coefficients per Interval

Figure B-14 Core SF14

(5) Power Law Best-Fit Coefficients per Interval

Sample Depth (cm)	Median Grain Size (µm)	Wet Bulk Density (g/cm³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{er} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	17.46	1.05	0.17	7.9	0.1	0.2	0.16	0.16	0.16
2	20.29	1.17	0.36	7.5	0.2	0.4	0.32	0.35	0.35
6.3	18.44	1.20	0.42	7.7	0.4	0.8	0.64	0.78	0.78
9.5	18.95	1.21	0.43	7.6	0.4	0.8	0.80	0.70	0.70
12.5	18.75	1.22	0.44	7.2	0.8	1.6	1.28	1.37	1.37
Mean	18.78	1.17	0.36	7.6	0.4	0.76	0.64	0.67	0.67

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	2	4.77E-05	1.62	0.96
2	2	6.3	1.24E-05	1.65	0.95
3	6.3	9.5	7.66E-07	2.37	0.83
4	9.5	12.5	4.32E-06	1.62	0.91
5	12.5	17	1.14E-07	2.59	0.98

ormo.	
$\mu m = micrometers$	
cm = centimeters	
Prepared on 6/13/2022 <i>PACIFIC ground water GROUP</i> into grad	
SEDflume Sampling Summary $HGGGG M M HIRCHOLD g/cm^3 = grams \ per \ cubic \ centimeter$	
Swan Island Basin BRIDGEWATER GROUP Ontsulting linc	

Figure B-15 Core SF15

Sample Depth (cm)	Median Grain Size (μm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	17.27	1.09	0.23	8.2	0.1	0.2	0.16	0.17	0.17
1.8	21.44	1.14	0.32	7.6	0.2	0.4	0.40	0.49	0.40
6.1	21.30	1.20	0.41	7.6	0.8	1.6	1.04	1.06	1.06
8.7	19.31	1.20	0.41	7.4	0.8	1.6	1.28	1.32	1.32
13.4	17.30	1.21	0.43	7.4	0.8	1.6	1.28	1.37	1.37
Mean	19.32	1.17	0.36	7.6	0.5	1.1	0.83	0.88	0.86

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	1.8	3.95E-05	1.83	0.93
2	1.8	6.1	4.88E-06	1.91	0.98
3	6.1	8.7	4.52E-07	2.29	0.95
4	8.9	13.4	1.06E-07	2.66	0.97
5	13.5	17.9	1.7E-07	2.44	0.94

			Units:
			µm = micrometers
			<i>cm</i> = <i>centimeters</i>
Prepared on 6/13/2022	PACIFIC groundwater GROUP	intogra	cm/s = centimeters per second
SEDflume Sampling Summary	HydroGeoLogic, Inc MOTT		g/cm ³ = grams per cubic centimeter
Swan Island Basin	BRIDGEWATER GROUP	consulting Inc.	Pa = Pascal

(5) Power Law Best-Fit Coefficients per Interval

Figure B-16 Core SF16

Sample Depth (cm)	Median Grain Size (µm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	17.99	1.11	0.27	8.5	0.1	0.2	0.2	0.27	0.20
2.8	21.92	1.17	0.37	7.5	0.4	0.8	0.64	0.69	0.69
6.3	16.27	1.33	0.62	6.8	0.4	0.8	0.64	0.66	0.66
9.5	18.47	1.28	0.53	6.7	0.4	0.8	0.8	1.00	0.80
12.3	20.99	1.22	0.45	7.5	0.8	1.6	1.28	1.31	1.31
Mean	19.13	1.22	0.45	7.4	0.4	0.84	0.71	0.79	0.73

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	2.8	1.62E-05	1.82	0.9
2	2.8	6.3	1.67E-06	2.12	0.96
3	6.3	9.5	2.34E-06	2	0.95
4	9.5	12.3	2.78E-07	2.55	0.94
5	12.3	16.9	6.61E-08	2.84	0.97

Prepared on 6/13/2022 SEDflume Sampling Summary Swan Island Basin	neters eters meters per second ms per cubic centimeter
---	---

(5) Power Law Best-Fit Coefficients per Interval

Figure B-17 Core SF17

Sample Depth (cm)	Median Grain Size (µm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	17.05	1.08	0.23	9.5	0.1	0.2	0.16	0.18	0.18
2.8	20.51	1.16	0.35	8.1	0.4	0.8	0.64	0.69	0.69
7.4	20.60	1.19	0.40	7.9	0.4	0.8	0.64	0.69	0.69
11.4	19.22	1.20	0.42	8.5	0.8	1.6	1.60	1.63	1.60
16	18.95	1.22	0.44	7.6	0.8	1.6	1.28	1.28	1.28
Mean	19.27	1.17	0.37	8.3	0.5	1.0	0.86	0.89	0.89

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	2.8	4.41E-05	1.45	0.87
2	2.8	7.4	5.42E-07	2.7	0.98
3	7.4	11.4	1.77E-06	2.09	0.98
4	11.4	16	1.75E-08	3.1	1
5	16	21.6	2.41E-07	2.36	1

			Units:
			µm = micrometers
			<i>cm</i> = <i>centimeters</i>
Prepared on 6/13/2022	PACIFIC groundwater GROUP	intogra	cm/s = centimeters per second
SEDflume Sampling Summary	HydroGeoLogic, Inc MOTT MACCONALD		g/cm ³ = grams per cubic centimeter
Swan Island Basin	BRIDGEWATER GROUP	consistently ince	Pa = Pascal

(5) Power Law Best-Fit Coefficients per Interval

Figure B-18 Core SF18

Sample Depth (cm)	Median Grain Size (μm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	20.43	1.07	0.21	9.9	0.1	0.2	0.20	0.26	0.20
1.7	24.19	1.21	0.42	7.9	0.4	0.8	0.52	0.53	0.53
4.9	25.86	1.25	0.50	7.4	0.4	0.8	0.56	0.59	0.59
7.9	26.45	1.22	0.44	7.6	0.8	1.6	1.12	1.24	1.24
10.6	26.14	1.26	0.52	7.6	0.4	0.8	0.64	0.69	0.69
Mean	24.61	1.20	0.42	8.1	0.4	0.8	0.61	0.66	0.65

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	1.7	2.55E-05	1.46	0.91
2	1.7	4.9	4.94E-06	1.79	0.89
3	4.9	7.9	5.73E-06	1.61	0.93
4	8.1	10.6	1.12E-07	2.7	0.88
5	10.6	15.3	3.88E-06	1.68	0.97

|--|

Sample Depth (cm)	Median Grain Size (μm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	20.55	1.11	0.29	9.7	0.2	0.4	0.32	0.31	0.31
1.2	27.81	1.27	0.52	6.5	0.4	0.8	0.8	0.93	0.80
5.4	22.23	1.24	0.48	7.3	0.8	1.6	0.96	0.87	0.87
8.7	19.02	1.31	0.56	5.6	0.8	1.6	1.28	1.30	1.30
13.2	16.14	1.33	0.61	6.2	1.6	3.2	2.56	2.51	2.51
Mean	21.15	1.25	0.49	7.1	0.8	1.5	1.18	1.18	1.16

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	1.2	9.44E-06	2.1	0.98
2	1.2	5.4	2.84E-07	2.63	0.97
3	5.6	7.7	1.45E-06	1.96	0.97
4	8.7	13.2	4.25E-07	2.13	0.99
5	13.2	18.3	4.45E-09	3.11	0.97

Prepared on 6/13/2022 SEDflume Sampling Summary Swan Island Basin	Units: µm = micrometers cm = centimeters cm/s = centimeters per second g/cm ³ = grams per cubic centimeter Pa = Pascal
---	--

(5) Power Law Best-Fit Coefficients per Interval

Figure B-20 Core SF20

Sample Depth (cm)	Median Grain Size (μm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	17.55	1.10	0.28	10.9	0.2	0.4	0.32	0.33	0.33
1.5	25.44	1.14	0.33	10.0	0.4	0.8	0.80	0.82	0.80
7.1	28.80	1.23	0.48	8.9	0.8	1.6	1.28	1.39	1.39
9.4	26.48	1.24	0.49	8.7	1.6	3.2	2.08	1.91	1.91
14	17.94	1.25	0.51	8.5	1.6	3.2	3.20	3.09	3.09
Mean	23.24	1.19	0.42	9.4	0.92	1.8	1.54	1.51	1.50

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r²
1	0	1.5	6.71E-06	2.25	0.98
2	1.5	7.1	1.48E-06	2	1
3	7.1	9.4	1.64E-07	2.43	0.91
4	9.4	14	5.6E-08	2.54	0.93
5	14	17.5	5.36E-10	3.54	0.96

(5) Power Law Best-Fit Coefficients per Interval

Figure B-21 Core SF21

Sample Depth (cm)	Median Grain Size (μm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	20.86	1.10	0.28	10.4	0.2	0.4	0.32	0.34	0.34
1.2	23.62	1.17	0.85	49.0	0.4	0.8	0.64	0.70	0.70
4.2	24.56	1.43	0.75	4.7	0.2	0.4	0.26	0.27	0.27
7.5	22.03	1.60	1.02	3.6	0.2	0.4	0.32	0.36	0.36
12.2	20.87	1.45	0.81	5.5	0.4	0.8	0.80	0.92	0.80
Mean	22.39	1.35	0.74	14.6	0.3	0.6	0.47	0.52	0.49

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	1.2	5.77E-06	2.36	0.97
2	1.2	4.2	2E-07	3.2	0.95
3	4.2	7.5	6.76E-06	2.72	0.98
4	7.5	12.2	1.96E-06	3.07	0.94
5	12.2	15.2	5.59E-06	1.3	0.93

Figure B-22 Core SF22

Sample Depth (cm)	Median Grain Size (μm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	20.43	1.10	0.28	11.5	0.2	0.4	0.40	0.54	0.40
2.4	23.4	1.16	0.37	10.4	0.4	0.8	0.64	0.66	0.66
7.2	36.00	1.26	0.53	8.8	0.8	1.6	1.04	1.07	1.07
11	29.36	1.21	0.46	9.4	0.4	0.8	0.64	0.66	0.66
14	29.47	1.27	0.54	8.6	0.8	1.6	1.28	1.29	1.29
Mean	27.73	1.20	0.44	9.7	0.5	1.0	0.80	0.84	0.82

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	\mathbf{r}^2
1	0	2.4	8.36E-07	2.83	0.9
2	2.4	7.2	8.74E-07	2.52	0.99
3	7.2	11	7.31E-08	3.05	1
4	11	14	3.03E-07	3.08	1
5	14	18.7	6.01E-08	2.9	0.97

Prepared on 6/13/2022 SEDflume Sampling Summary Swan Island Basin Image: Actific ground water GROUP Image: Actific
--

(5) Power Law Best-Fit Coefficients per Interval

Figure B-23 Core SF23

Sample Median W Grain 7 Depth Size (cm)		Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	21.31	1.07	0.24	11.9	0.2	0.4	0.28	0.28	0.28
2.7	22.88	1.14	0.35	10.6	0.4	0.8	0.64	0.62	0.62
6.3	26.55	1.20	0.43	9.3	0.8	1.6	1.04	1.03	1.03
9.4	31.48	1.22	0.47	9.2	0.8	1.6	1.04	0.99	0.99
13.8	30.65	1.28	0.55	8.6	0.8	1.6	1.28	1.34	1.34
Mean	26.57	1.18	0.41	9.9	0.6	1.2	0.86	0.85	0.85

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	2.7	2.12E-05	1.49	0.84
2	2.7	6.3	4.1E-06	1.75	0.98
3	6.3	9.4	4.62E-07	2.31	0.98
4	9.4	13.8	1.31E-06	1.89	0.98
5	13.8	18.3	1.17E-07	2.6	0.99

	Units:
	µm = micrometers
	<i>cm</i> = <i>centimeters</i>
intogra	cm/s = centimeters per second
	g/cm ³ = grams per cubic centimeter
Constraining inc.	Pa = Pascal

Prepared on 6/13/2022

SEDflume Sampling Summary Swan Island Basin

(5) Power Law Best-Fit Coefficients per Interval

Figure B-24 Core SF24

Sample Depth (cm)	Median Grain Size (μm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	22.28	1.07	0.24	11.7	0.2	0.4	0.32	0.30	0.30
1.5	21.34	1.15	0.36	10.6	0.4	0.8	0.64	0.70	0.70
4.8	35.29	1.20	0.43	9.7	0.8	1.6	1.28	1.35	1.35
7 .9	29.19	1.21	0.46	10.4	0.8	1.6	1.04	1.04	1.04
11	26.82	1.24	0.51	9.1	0.8	1.6	1.04	1.01	1.01
Mean	26.98	1.17	0.40	10.3	0.6	1.2	0.86	0.88	0.88

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	1.5	1.43E-05	1.76	0.99
2	1.5	4.8	1.38E-06	2.21	0.94
3	4.8	7.9	2.91E-08	3.13	0.99
4	7.9	11	3.55E-07	2.4	0.98
5	11	16.1	3.94E-07	2.39	1

|--|

(5) Power Law Best-Fit Coefficients per Interval

Figure B-25 Core SF25

Sample Depth (cm)	Median Grain Size (μm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	28.33	1.27	0.53	8.1	0.2	0.4	0.28	0.28	0.28
1	30.78	1.34	0.67	9.0	0.8	1.6	1.60	1.69	1.60
4.1	28.76	1.25	0.53	9.6	0.4	0.8	0.64	0.67	0.67
6.6	24.42	1.37	0.69	7.3	0.4	0.8	0.80	0.78	0.78
Mean	28.07	1.31	0.60	8.5	0.5	0.9	0.83	0.85	0.83

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	1	1.04E-05	2.19	0.99
2	1	4.1	5.78E-10	4.27	1
3	4.1	6.6	6.19E-07	2.67	0.98
4	6.6	11.1	6.17E-07	2.48	0.98

Prepared on 6/13/2022 SEDflume Sampling Summary Swan Island Basin	Units: µm = micrometers cm = centimeters cm/s = centimeters per second g/cm ³ = grams per cubic centimeter Pa = Pascal	Figure B-26 Core SF26
---	--	--------------------------

(1) Vertical alignment of core with applied shear stress and corresponding erosion rate

(3) Particle size distribution with depth

(2) Median Particle Size, Bulk Density, and Critical Shear Stress with Depth

Sample Depth (cm)	Median Grain Size (μm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	30.51	1.38	0.69	6.3	0.2	0.4	0.40	0.41	0.40
1.4	31.30	1.38	0.72	8.4	0.8	1.6	1.28	1.33	1.33
6	31.88	1.31	0.62	9.6	0.2	0.4	0.40	0.44	0.40
8.5	29.30	1.27	0.57	10.9	0.2	0.4	0.26	0.25	0.25
Mean	30.75	1.33	0.65	8.8	0.4	0.7	0.585	0.60	0.60

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	0.6	9.99E-06	1.64	0.95
2	1.4	6	1.8E-09	4.23	0.99
3	6	8.5	3.1E-07	3.91	0.99
4	8.5	12.1	1.13E-05	2.42	0.99

Prepared on 6/13/2022 SEDflume Sampling Summary Swan Island Basin	Units: µm = micrometers cm = centimeters cm/s = centimeters per second g/cm ³ = grams per cubic centimeter Pa = Pascal	Figure B-27 Core SF27
---	--	--------------------------

(1) Vertical alignment of core with applied shear stress and corresponding erosion rate

(3) Particle size distribution with depth

(2) Median Particle Size, Bulk Density, and Critical Shear Stress with Depth

Sample Depth (cm)	Median Grain Size (µm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)	I
0	31.49	1.21	0.5	13.7	0.2	0.4	0.28	0.26	0.26	1
1.6	24.45	1.21	0.48	11.6	0.2	0.4	0.40	0.46	0.40	
5.8	27.94	1.11	0.38	18.5	0.4	0.8	0.52	0.56	0.56	
10.1	25.64	1.16	0.42	13.8	0.2	0.4	0.40	0.47	0.40	3
Mean	27.38	1.17	0.45	14.4	0.3	0.5	0.40	0.44	0.41	4

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r^2
1	0	1.6	1.59E-05	1.95	0.98
2	1.6	5.8	1.7E-06	2.66	0.97
3	5.8	10.1	6.49E-07	2.94	0.95
4	10.1	14.4	7.4E-07	3.18	0.98

Prepared on 6/13/2022 SEDflume Sampling Summary Swan Island Basin Units: $\mu m = micrometers$ cm = centimeters per second $g/cm^3 = grams per cubic centimeter$ Pacific groundwater GROUP methodewater GROUP	Figure B-28 Core SF28	
--	--------------------------	--

Sample Depth (cm)	Median Grain Size (μm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	27.12	1.18	0.40	10.2	0.1	0.2	0.20	0.23	0.20
2.1	27.69	1.18	0.43	11.5	0.4	0.8	0.80	0.81	0.80
6.7	25.31	1.15	0.39	12.3	0.8	1.6	0.87	0.64	0.80
11.5	32.38	1.22	0.48	10.9	0.4	0.8	0.52	0.52	0.52
15.5	28.83	1.24	0.51	10.1	0.8	1.6	1.04	0.99	0.99
Mean	28.27	1.19	0.44	11.0	0.5	1.0	0.69	0.64	0.66

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	2.1	2.43E-05	1.67	0.91
2	2.1	6.7	2.86E-07	2.81	0.99
3	6.7	11.5	2.66E-06	1.95	0.88
4	11.5	15.5	4E-07	3.37	0.98
5	15.5	18.6	7. 16E-0 7	2.15	0.99

noup integral m consulting inc.	Units: µm = micrometers cm = centimeters cm/s = centimeters per second g/cm ³ = grams per cubic centimeter Pa = Pascal
1	ra – rasiai

Prepared on 6/13/2022

SEDflume Sampling Summary Swan Island Basin

(5) Power Law Best-Fit Coefficients per Interval

Figure B-29 Core SF29

(3) Particle size distribution with depth

(2) Median Particle Size, Bulk Density, and Critical Shear Stress with Depth

Sample Depth (cm)	Median Grain Size (μm)	Wet Bulk Density (g/cm ³)	Dry Bulk Density (g/cm ³)	Loss on Ignition (%)	τ _{no} (Pa)	τ _{first} (Pa)	τ _{cr} Linear (Pa)	τ _{cr} Power (Pa)	Recommended τ _{cr} (Pa)
0	23.12	1.1	0.29	11.0	0.1	0.2	0.20	0.25	0.20
2.2	26.3	1.14	0.36	12.2	0.4	0.8	0.64	0.57	0.57
7.3	34.54	1.21	0.48	11.4	0.8	1.6	1.28	1.32	1.32
10.4	32.19	1.16	0.39	11.3	0.8	1.6	0.96	0.83	0.83
14.6	31.6	1.25	0.54	11.0	0.8	1.6	1.60	1.64	1.60
Mean	29.55	1.17	0.41	11.4	0.6	1.2	0.936	0.922	0.90

Interval	Depth Start (cm)	Depth Finish (cm)	А	n	r ²
1	0	2.2	2.05E-05	1.75	0.91
2	2.2	7.3	2.98E-06	2.01	0.96
3	7.3	10.4	4.31E-08	3	1
4	10.4	14.6	1.05E-06	2.15	0.95
5	14.6	17.2	2.21E-08	3.01	0.99

Units:
µm = micrometers
cm = centimeters
cm/s = centimeters per second
g/cm ³ = grams per cubic centimeter
Pa = Pascal

Prepared on 6/13/2022

SEDflume Sampling Summary Swan Island Basin

(5) Power Law Best-Fit Coefficients per Interval

Figure B-30 Core SF30